Альтернативные двигатели для чего

Подавляющее большинство автомобилей сегодня оснащены двигателями внутреннего сгорания, работающими на бензине или дизельном топливе. Некоторые владельцы, желая сэкономить, устанавливают на свой автомобиль газовое оборудование, после чего он ездит на пропане или метане. Но принципиальной разницы с бензиновым вариантом здесь нет, так что это топливо тоже можно считать традиционным.

Автомобили с ДВС не случайно так рапространены. Такие двигатели сравнительно компактны, быстро заводятся, легко заправляются. Но у них есть и минусы. Например, машины с ДВС загрязняют атмосферу, создают много шума, да и запасы нефти на нашей планете не бесконечны. Так что в попытках придумать автомобиль с альтернативным двигателем и источником энергии нет недостатка.

Вокруг альтернативного топлива существует множество легенд и теорий заговора. Многие убеждены, что мы продолжаем ездить на бензине лишь потому, что нефтяные корпорации препятствуют внедрению альтернативных технологий и даже убивают изобретателей.

Альтернативные двигатели для чего

Тема заговора нефтяных корпораций в сети всплывает очень часто

Правда, надёжных доказательств существования прорывных технологий, вроде двигателей, работающих на воде или на «свободной энергии», пока нет, так что ниже мы рассмотрим достоверно существующие варианты.

Автомобили с ДВС на альтернативном топливе

Альтернативные двигатели для чего

Самый простой вариант найти альтернативный источник энергии для автомобиля — оставить ДВС, практически не меняя его, но заправлять машину не топливом, сделанным из нефти, а другим видом жидкого топлива. Особенно активно работы в этом направлении развернулись после роста цен на нефть в 2000-х годах. Чем же можно заменить топливо из нефти? Самая популярная альтернатива бензину — это спирт, обычно этиловый, скрывающийся под названием биоэтанол. Дизельный же двигатель можно заправлять растительным маслом. Эти виды альтернативного топлива обычно получают при переработке растительных отходов, например, кукурузы или других зерновых, тростника, древесных опилок, водорослей и т. д. Есть проекты по переработке на топливо пластиковых отходов и другого мусора. Автомобилей, работающих на биотопливе, уже немало, и в некоторых странах, например, в Бразилии, они составляют уже существенную часть. Однако биотопливо всё же довольно дорого, и переход на него нередко подвергается критике из-за того, что косвенным следствием выращивания культур под биотопливо является рост цен на продовольствие.

Подробнее про ДВС на альтернативном топливе читайте в отдельной статье.

Автомобили с паровым двигателем

Альтернативные двигатели для чего

Этот тип двигателя появился довольно давно, и первые в истории автомобили были оснащены именно им. Ещё в первой половине 20-го века немало автомобилей с паровым двигателем ездило по дорогам разных стран. У паровых двигателей на самом деле немало преимуществ. Они просты и надёжны, производят мало шума, им не нужна коробка передач. И всё же из-за своей громоздкости и долгого запуска паровые двигатели проиграли соревнование с ДВС. Однако кто знает, может быть, когда нефти останется совсем мало, они ещё вернутся?

Подробнее про автомобили с паровым двигателем.

Электромобили

Альтернативные двигатели для чего

Расцвет электромобилей пришёлся на конец 19-го и начало 20-го века. Основной проблемой их стала малая ёмкость и срок службы аккумуляторов. Но в отличие от машин с паровым двигателем, электромобили в историю не ушли и сегодня рассматриваются как вполне перспективный вариант для замены автомобилей с ДВС. Дело за малым — разработать ещё более ёмкие и дешёвые аккумуляторы, чем те, которые есть сегодня.

Интересная разновидность электромобилей — машины, оснащённые солнечными батареями. Им не нужна подзарядка от сети, они могут получать энергию сами совершенно бесплатно.

Альтернативные двигатели для чего

Во время соревнований в Австралии, в рамках которых нужно было пересечь весь континент, такие автомобили показывали среднюю скорость до 100 км/ч, не затрачивая при этом ни капли топлива. Жаль, что прокатиться на подобной машине можно лишь днём и в безоблачную погоду.

Подробнее про электромобили

Автомобили на сжатом воздухе

Энергию сжатого воздуха для движения разных механизмов человечество использует уже очень давно. Ещё в конце 19 века её попытались использовать и для движения транспортных средств. У данного варианта есть определённые преимущества.

Двигатель на сжатом воздухе очень прост, компактен и долговечен, не загрязняет окружающую среду, для его производства не нужны дефицитные материалы. Но есть, конечно, и минусы.

Баллоны со сжатым воздухом запасают в несколько раз меньше энергии, чем баки с бензином, а их заправка при помощи компрессора занимает довольно много времени.

Транспортные средства на сжатом воздухе (которые иногда называют воздухомобилями или пневмомобилями), конечно, не слишком популярны, но то одна, то другая компания время от времени пытается запустить воздухомобиль в производство. Вот, например, «AirPod», разработанный люксембургской компанией MDI.

Альтернативные двигатели для чего

Небольшой воздухомобиль рассчитан на трёх человек и может проехать до 220 км на одной заправке. Заправляются баллоны при этом довольно быстро — всего за несколько минут. К машинке проявили интерес несколько компаний, в 2019 планируется запуск массового производства.

  • Видео — AirPod на улицах города:
  • Впрочем, есть модели и большего размера, как, например, этот Tata OneCat:

Альтернативные двигатели для чего

Ну а насколько на самом деле окажутся востребованными автомобили на сжатом воздухе, покажет будущее.

Гиробусы

Если раскрутить маховик и обеспечить маленькую силу трения, запасённая в нём кинетическая энергия может сохраняться довольно долго. А если поставить маховик на автомобиль, он может двигаться за счёт этой энергии.

Данная идея легла в основу гиробусов — специального вида транспорта, оснащённого такими маховиками.

В 1950-е гиробусы были построены и эксплуатировались в Бельгии и Швейцарии как замена троллейбусов на маршрутах, где прокладка троллейбусных линий выглядела экономически нецелесообразной.

Альтернативные двигатели для чего

Когда вращение маховика замедлялось, гиробус подъезжал к «заправке» — штанге с электрическими контактами, а электрический двигатель вновь раскручивал маховик. Основным недостатком гиробусов стало то, что раскручивание маховика занимало довольно много времени, так что их в конце концов вывели из эксплуатации.

Машины с газовыми турбинами

Альтернативные двигатели для чего

Газовая турбина — вид двигателя, в котором горячий газ, образующийся при сгорании топлива, своим движением раскручивает лопасти турбин, а затем выбрасывается через сопло. Этот двигатель может выдавать очень большую мощность при небольших размерах, поэтому вскоре после своего появления он прочно обосновался на самолётах и вертолётах. Однако нашлись и энтузиасты применения газовых турбин на наземном транспорте. В первую очередь привлекала их именно мощность.

Газотурбинными двигателями стали оснащать танки, грузовики, автобусы и легковые автомобили. В 1950-е в США на буме увлечения футуристическими проектами был выпущен мелкой серией газотурбинный Firebird, своим дизайном больше напоминавший истребитель.

Альтернативные двигатели для чего

Машина развивала скорость более 300 км/ч, но имела и весомые недостатки. Прежде всего это был огромный расход топлива, а также мощный гул, напоминавший гул реактивного самолёта.

В последующие годы эксперименты с газотурбинными двигателями продолжались. Вот только некоторые из реализованных проектов.

Сухопутный поезд LeTourneau TC-497, построенный в США, имел грузоподъёмность 400 тонн и был оснащён газотурбинными двигателями суммарной мощностью 5000 л. с.

  1. Газотурбинный автобус, построенный в СССР, развивал скорость 160 км/ч
  2. Также в СССР поставили газотурбинный двигатель на танк Т-80

Jaguar C-X75 с двумя газовыми турбинами мощностью 778 л. с., выпущенный в 2010 г., может разгоняться до 330 км/ч

В целом идея оснащения газовыми турбинами наземного транспорта в последние десятилетия потеряла популярность. Виной этому огромный расход топлива, дороговизна и меньшая надёжность газотурбинных двигателей по сравнению с обычными ДВС.

Автомобили с газогенераторами

Может ли автомобиль ездить на твёрдом топливе, например, на дровах или угле? Да, если его оборудовать газогенератором. При пиролизе древесина разлагается, при этом выделяется горючий газ, состоящий из смеси водорода, угарного газа и метана. Если такой газ очистить и направить в двигатель внутреннего сгорания, он будет работать.

Конечно ездить на дровах не так удобно, как на бензине, да и максимальную мощность машина развить не сможет, но зато можно существенно сэкономить. В первой половине 20 в. автомобили с газогенераторами активно использовались, да и сегодня разные энтузиасты используют подобные установки.

Подробнее про автомобили на дровах

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива.

При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты.

Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива.

Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.

Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД.

Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Читайте также:  В чем состоит принципиальная разница смесеобразования в дизелях и бензиновых двигателях

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства.

ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель.

Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны.

Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 

  •   Экологичность: при сгорании водорода в двигателе образуется практически только вода
  •  Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети
  •  Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.
70 тыс. в год  к 2027 г. составит выпуск новых водородных автомобилей в мире 
  1.   Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)
  2.  В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ
  3.  Высокие затраты на выработку водорода: от

$4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80) Отсутствие автомобильной инфраструктуры

  •  Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды
  •  Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ
«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ   Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ 40 млн ед.  к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)
  1.  Экологичность: метанол менее биологически опасен, чем нефтепродукты
  2.  Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства
  3.   Простота эксплуатации: в частности, метанол не улетучивается при транспортировке
  4.  Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ
  5.  Высокая себестоимость производства метанола с помощью существующих технологий
  6.  Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии
«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ).

В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ).

Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 

  •     Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах
  •  Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе
  •  Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)
  •  Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))
  •  Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 
$9,7  млрд к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)  Ужесточение экологических стандартов  Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.  Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  1.   Ряд нерешенных проблем с хранением ДМЭ
  2.   Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива
  3.  При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью
  4.   При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза
  5.   ДМЭ является наркотическим галлюциногенным веществом
«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

Альтернативные двигатели

Нынешние цены на бензин заставляют активно искать альтернативу этому виду горючего.

И если о массовом переходе на водород или топливные элементы пока говорить рано (в силу дороговизны и сложности подобных устройств), то замена бензина дровами – технология уже известная.

Но оправданна ли она? Оборудовав ГАЗ-52 самодельной газогенераторной установкой, группа инженеров Житомирского агроэкологического университета не изобрела… Читать далее »

  Модель двигателя на постоянных магнитах.

Гуляя просторами интернета я обратил внимание на странные споры вокруг так называемых вечных двигателей, причем основная часть авторов сайтов и комментаторов осациируют вечный двигатель с генераторами энергии, принцип работы которых основан на взаимодействии постоянных магнитов (двигателя на постоянных магнитах). Мое личное мнение – нет, и не может быть ничего… Читать далее »

Воздушный двигатель Идея этого альтернативного воздушного двигателясовершенно проста и не нова, основана на принципе работы простейшего парового двигателя.

Напомню в краце, там для получения полезной энергии используется вода, которая вследствие нагревания превращается в пар, результатом чего является повышение давления.

Затем этот пар (под высоким давлением) передается на турбину (или поршнь), с которой по средствам вала или редуктора… Читать далее »

Двигатель Шаубергера своими руками   В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества.

Как создать двигатель Шаубергера своими руками?    Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций.

Идея двигателя Шаубергера… Читать далее »

Гидростатический двигатель Уважаемые участники сайта, позвольте предложить Вам тему связанную с альтернативной энергетикой — гидростатический двигатель.

  Возникла идея построить действующий гидростатический двигатель (описание и принцип действия для понимания сути идеи выложу ниже), но нужен взгляд со стороны и желательно не один, и критические замечания.

Также нужны расчеты движущего элемента и маховика — для примера,… Читать далее »

Водородный генератор-это вид оборудования, при правильной установке которого можно снизить расхода топлива мотоцикла, легкового или грузового автомобиля, а также сократить количество вредных выбросов в атмосферу.

При помощи батареи питания и генератора постоянного тока вода разлагается на кислород и водородный газ (HHO), который попадает в двигатель и потом выделяется в атмосферу.

Читайте также:  Автоодеяло обгорела дырка от двигателя почему

HHO улучшает качество сгорания топлива… Читать далее »

Генератор Адамса относится к классу безтопливных самовосстанавливающихся зарядных устройств.

Самым главным преимуществом данного устройства является абсолютная независимость от погодных условий (ветрогенераторам нужна постоянная и, желательно, сильная ветреная погода, а генераторы на солнечных элементах весьма критичны к яркости солнечного освещения и в ночное время обычно не работают). Конструкция генератора Адамса «Вега»: Конструкция генератора Адамса (как и перечисленных выше ветрогенератора и… Читать далее »

В настоящее время двигатель Шаубергера пользуется большой популярностью и рассматривается как альтернативный двигатель. Что представляет собой подобное устройство, и в чем его преимущества.

Как создать двигатель Шаубергера своими руками? Австрийский инженер Виктор Шаубергер работал над созданием электрогенератора, в котором турбина отличалась от конструкций обыкновенных водяных электростанций.

Идея двигателя Шаубергера заключалась в создании вихря внутри камеры,… Читать далее »

Альтернативные двигатели

Двигатель внутреннего сгорания

был изобретен в далеком 1765 году

Его работа основана на преобразовании химической энергии топлива в механическую работу. Данный процесс становится возможным, благодаря сгоранию бензина или солярки, находящихся в рабочей зоне агрегата. Недостатки мотора подобного типа вполне очевидны – чрезмерно сложная система настройки глушителей, системы зажигания/впуска, а также низкий коэффициент полезного действия.

Устаревший кривошипно-шатунный механизм, как правило, оказывается не в состоянии обеспечить КПД выше 35-40%.

Однако и главное преимущество двигателя внутреннего сгорания выглядит весьма солидно – он экономичнее всех существующих моторов, за исключением некоторых экзотических образцов.

Пытаясь максимально использовать преимущества двигателя подобного типа и стараясь устранить недостатки, люди издавна пытались разработать и применить его альтернативные версии.

Первый двигатель Даймлера годился и для транспортного, и для стационарного применения. Работал на газе и на бензине. Все позднейшие конструкции Даймлера рассчитаны исключительно на жидкое топливо.

Большую частоту вращения вала двигателя, обеспечиваемую, в частности, интенсивным воспламенением смеси, Даймлер справедливо считал главным показателем работы двигателя на транспортной машине.

Частота вращения вала двигателя Даймлера была в 4—5 раз больше, чем у газовых двигателей, и достигала 450—900 об/мин, а мощность на 1 л рабочего объема — вдвое больше. Соответственно могла быть уменьшена масса.

К этим штрихам «транспортной специфики» добавим закрытый картер (кожух) двигателя, заполненный смазочным маслом и защищавший подвижные части от пыли и грязи. Охлаждению воды в окружающей двигатель «рубашке» способствовал пластинчатый радиатор. Для пуска двигателя служила заводная рукоятка… Теперь имелось все необходимое для создания легкого самодвижущегося экипажа — автомобиля.

Известные альтернативные варианты двигателя

Наиболее известный альтернативный вариант двигателя внутреннего сгорания предложил в 1957 году изобретатель Феликс Ванкель. Мотор представляет собой четырехтактный механизм с ротором треугольной конфигурации.

Придает вращающий момент ротору планерная передача, за счет чего объем камеры между треугольником и статором постоянно варьируется.

Главным достоинством двигателя Ванкеля является экономичность конструкции агрегата – для него требуется более чем на треть меньшее количество деталей, чем для образца классического типа.

Кроме того, такой мотор, сохраняя первоначальную мощность, весит в два раза меньше, нежели стандартный двигатель внутреннего сгорания. Главным недостатком изобретения Ванкеля следует признать малый рабочий ресурс, вызванный низким качеством уплотняющих материалов и большим расходом топлива.

Еще один интересный альтернативный вариант кривошипно-шатунного двигателя предложил ученый А.С. Абрамов.

Его разработка предлагает систему преобразования стандартного прямолинейного движения поршня во вращающий момент, за счет скольжения роликового механизма, прикрепленного к ротору.

Подробные научные исследования данного варианта в настоящий момент должным образом не проведены, поэтому возможность работы такого двигателя при больших мощностях достоверно неизвестны.

Альтернативные двигатели

  • Необходимость охраны среды обитания от загрязнения отработавшими газами автомобилей и требования топливной экономичности поставили перед конструкторами транспортных средств вопрос: насколько бензиновые (карбюраторные) двигатели перспективны для будущего автомобильного транспорта и какие двигатели могут прийти им на смену.
  • В качестве альтернативных карбюраторному стали предлагаться дизели, роторный двигатель, газовая турбина, паровая поршневая машина, паровая турбина, двигатель «внешнего» сгорания (Стирлинга), инерционный двигатель и некоторые другие.
  • Токсичность выхлопных газов у карбюраторного и дизельного двигателей
Токсичное вещество Количество токсичных веществ на 1000 л сжигаемого топлива, кг
Карбюраторный двигатель Дизель
Окись углерода СО 200 25
Углеводороды СН 25 8
Окислы азота NOx 20 36
Сажа 1 3
Сернистые соединения SOx 1 30
Итого: 247 102

Дизельный двигатель. Считается, что в борьбе за уменьшение загрязнения воздушного бассейна дизельные двигатели могут сыграть существенную роль.

Относясь к классу двигателей внутреннего сгорания, дизель отличается от карбюраторного двигателя: имеет более высокие степени сжатия, которые обеспечивают самовоспламенение топлива, ввиду этого отпадает надобность в системах электрического зажигания; вместо карбюратора используются топливные форсунки, осуществляющие под большим давлением впрыск топлива в цилиндры.

Дизельный двигатель выделяет значительно меньше окиси углерода и углеводородов. В его отработавших газах содержится даже меньше окислов азота, если по этому компоненту его сравнивать с бензиновыми двигателями с особо высокой степенью сжатия.

Однако крупными недостатками дизелей являются дымность, неприятный запах и более высокий уровень шума. Тем не менее более высокая тепловая экономичность дизелей (эксплуатационный к. п. д.

30—35% вместо 20—25% у карбюраторных двигателей), способность работать на более дешевом (дизельном) топливе, возможность получения относительно больших мощностей предопределили дизелю доминирующее положение в мировом грузовом автомобильном парке и парке автобусов.

К этому следует добавить, что ряд автомобильных фирм уже в течение многих лет выпускает и легковые автомобили с дизельными двигателями, причем выпуск таких автомобилей возрастает.

В нашей стране осуществляется дизелизация грузового и автобусного парков и разрабатываются меры по использованию дизелей на легковых автомобилях.

Ведутся серьезные научно-исследовательские и опытно-конструкторские работы по дальнейшему совершенствованию дизелей: повышению топливной экономичности, удельной мощности, надежности и долговечности, а также снижению металлоемкости, токсичности отработавших газов.

Одна из важных мер, позволяющих достичь поставленных целей, — применение так называемого турбонаддува, т. е. постановка на дизель специального турбокомпрессора для нагнетания в цилиндры большего количества воздуха. На лучших образцах получен к. п. д., равный 45%.

Основные выводы из исследований и опыта эксплуатации дизельных автомобилей, проведенных в СССР и за рубежом, сводятся к тому, что предстоит расширение производства этих автомобилей. Прогнозируется, что в мире к 1990 г. 10% всех легковых автомобилей будут иметь дизели, а к 2000 г. их удельный вес возрастет до 25—30%.

Роторный двигатель. Это — бензиновый двигатель, имеющий принципиально иную конструкцию основного силового агрегата. У роторного двигателя нет цилиндров и шатунно-кривошипной группы.

Вместо поршней с их возвратно-поступательными движениями он имеет вращающийся ротор, который передает крутящий момент через зубчатую передачу.

В роторном двигателе нет клапанов, а лишь впускное и выпускное отверстия.

Не разбирая подробно конструкционные и технико-экономические характеристики этого двигателя (меньшая масса, компактность, высокооборотность, большая удельная мощность на единицу массы, простота производства, отсутствие вибраций, способность работать на топливе с низким октановым числом и др.

), отметим, что он дает несколько менее токсичный выхлоп в результате меньшего содержания окислов азота.

В силу конструкционных особенностей и компактности роторный двигатель облегчает установку дополнительных приборов для очистки отработавших газов и улучшает протекание реакций в них ввиду более высокой температуры отработавших газов (несмотря на более низкую температуру сгорания).

Давно запатентованный немецким механиком Ванкелем роторный двигатель в течение многих лет дорабатывался в ФРГ, где небольшое их производство было начато лишь в 1964 г.

Японские промышленники, приобретшие лицензию на двигатель Ванкеля, затратили много времени на его доводку и лишь к середине 60-х годов создали работоспособную конструкцию. В 1967 г.

фирма «Тойо Когио» начала серийный выпуск автомобилей «Мацуда» с роторным двигателем и к 1980 г. выпустила миллион таких автомобилей, часть которых была продана за границей.

С 1970 г. автомобили с роторными двигателями начали выпускаться фирмой «Ситроен» во Франции. Концерн «Дженерал моторс», перекупивший лицензию у Японии, также проводил работы над усовершенствованием двигателя Ванкеля и намечал с 1974 г. расширить выпуск автомобилей с роторным двигателем. Однако позднее этот концерн отказался от продолжения работ над указанным двигателем.

В связи с энергетическим кризисом производство автомобилей с роторными двигателями не получило большого развития, за исключением упомянутой выше фирмы в Японии, которая вложила в исследования и организацию производства этих двигателей большие капиталы и которая продолжает их выпуск, совершенствуя одновременно конструкцию.

Главная причина лежит в меньшей экономичности роторного двигателя по сравнению с традиционным поршневым.

Кроме этого, до конца не удалось преодолеть существенные конструкционные трудности с обеспечением необходимой плотности между корпусом (блоком) двигателя и ротором по мере износа их в процессе эксплуатации.

В силу названных причин новые автомобили с роторными двигателями почти перестали появляться на выставках (салонах) автомобилей. Тем не менее ряд зарубежных фирм продолжают работы над этим двигателем.

У нас в стране также проводятся исследования и разработка роторных двигателей. В течение ряда лет ведутся работы на Волжском автомобильном заводе, где совместно с Автомобильным и моторным институтом (НАМИ) разработаны и изготовлены экспериментальные образцы роторного двигателя, предназначенного для установки на автомобили ВАЗ «Жигули».

Читайте также:  Газ 3307 греется двигатель что может быть

Газотурбинный двигатель. В течение последних 25—30 лет проводятся исследования и экспериментальное конструирование газотурбинных двигателей для автомобилей. Газовые турбины, как известно, широко применяются на воздушном транспорте. Они имеют малую массу, рекордную удельную мощность, компактность, малое число подвижных частей, плавность работы и другие качества.

Попытки применить газотурбинный двигатель на автомобиле предприняты давно. Еще в 1959 г. в СССР был создан экспериментальный автобус, оборудованный газотурбинным двигателем.

Во время его испытаний были обнаружены существенные недостатки, среди которых важное место занимала низкая топливная экономичность двигателя, а также трудности приспособления его к условиям работы транспортного средства (малая приемистость, невозможность динамического торможения).

Из зарубежных стран интерес к этому двигателю проявили США, Великобритания, Швеция. К настоящему моменту в мире построены сотни газотурбинных экспериментальных автомобилей.

Многие конструкторы считают газовую турбину более перспективной для тяжелых грузовых автомобилей и автобусов, хотя имеются прецеденты создания и легковых автомобилей. Так, еще на выставке 1969 г.

в Чикаго фирма «Шевроле» показывала легковой автомобиль «Астра-III» с газотурбинным двигателем мощностью 230 кВт при массе турбины 70 кг.

В СССР в 1970 г. был изготовлен карьерный самосвал грузоподъемностью 120 т с газовой турбиной мощностью 880 кВт. Позднее на новой модели грузового автомобиля МАЗ-6422 проходил испытания новый отечественный газотурбинный двигатель мощностью 260 кВт.

В 70-х годах компания «Вильямс» (США) разработала газовую турбину для массового легкового автомобиля мощностью 60 кВт. В качестве достоинств этого двигателя называли отсутствие вибрации, малошумность, возможность работы без системы водяного охлаждения и достаточно чистые отработавшие газы.

Тогда же были опубликованы прогнозы, согласно которым в США в 1980 г. намечалось выпускать 50 тыс. автомобилей с газотурбинными двигателями. Однако прогнозы эти не оправдались.

Основная причина заключается в меньшей экономичности созданных газовых турбин против карбюраторного двигателя и особенно дизеля.

Недостаточный к. п. д. газовой турбины связан с относительно невысокой температурой рабочего процесса. Повышение этой температуры требует применения дорогих жаропрочных металлов и сложных конструкций турбинных лопаток.

В этом смысле большой интерес представляют сообщения печати об испытании в Швеции экспериментального автомобиля с газовой турбиной, в конструкции которой использована жаропрочная керамика.

Пока же газотурбинный двигатель остается сложным по конструкции и дорогим.

Что касается отработавших газов, то результаты большинства испытаний говорят о существенно меньшей их токсичности в части окиси углерода и углеводородов.

Об удельном весе окислов азота приводятся противоречивые данные: по одним сведениям окислов азота у газовых турбин меньше, чем у дизелей и карбюраторных двигателей, по другим — больше.

Дальнейшие эксперименты позволят устранить это противоречие.

Таким образом, пока недостаточно оснований считать газовую турбину серьезной альтернативой традиционным автомобильным поршневым двигателям внутреннего сгорания.

Паровой двигатель. Требование сохранить в чистоте воздушный бассейн заставило некоторых конструкторов снова вернуться к почти забытой идее создания парового автомобиля. Во Франции и в ряде других, стран они появились более 100 лет назад.

Тихоходные, но работоспособные паровые «омнибусы» в Париже совершали рейсы еще в 1873 г. Тогда же были созданы и легковые автомобили с паровыми двигателями.

Один экземпляр такого автомобиля на четыре места, построенного французской фирмой «Жардне-Серполле», можно видеть сейчас в национальном музее в Праге. Паровая машина, размещенная под полом автомобиля, позволяла ему развивать скорость 65 км/ч.

Паровые автомобили продолжали выпускаться и работать много лет спустя и после создания двигателя внутреннего сгорания и были окончательно сняты с производства в начале 30-х годов (в Великобритании).

В США, Японии, Австралии и ряде европейских стран сделаны попытки создать образцы современных паровых автомобилей разных категорий. Так, в США еще в 1968 г. были построены две модели легковых автомобилей.

Конструкция их включает водотрубный парогенератор, двигатель — паровую машину высокого давления, вспомогательную машину низкого давления (для приведения в действие водяного насоса и вентилятора радиатора).

Однако усовершенствованная паровая машина, а позднее легкий бензиновый двигатель, высокоэкономичный дизель и, наконец, газовая турбина полностью вытеснили громоздкий, плохо сбалансированный (а потому шумный), неэкономичный воздушный двигатель. Сейчас этот двигатель возрождается на новой технической основе.

Современный двигатель внешнего сгорания представляет собой герметически закрытый цилиндр, заполненный над поршнем сжатым гелием или водородом.

При сгорании топлива газ через стенку цилиндра нагревается и опускает поршень. Отработавший газ направляется в камеру охлаждения, а поршень возвращается в исходное положение.

После этого порция холодного газа поступает в камеру расширения (над поршнем) для нагрева и рабочего хода.

Помимо высокого к. п. д., равного 35—40% и более, двигатель внешнего сгорания может работать на любом топливе и дает минимальное загрязнение воздуха окисью углерода и углеводородами, поскольку горелка работает в стабильном режиме с оптимальным соотношением топлива и воздуха. Он практически бесшумен.

Полагают, что при использовании тепла, например, расплавленного лития, такой двигатель может вообще обходиться без сжигания топлива, что важно и реально при работе в черте города. Фирма «Филипс» разработала аккумуляторы тепла энергоемкостью до 23 кВт-ч.

К настоящему моменту построено достаточно много опытных образцов двигателя Стирлинга мощностью от 7 до 265 кВт, предназначенных для автомобилей, автобусов, судов и в качестве стационарных. Испытания таких двигателей ведутся в СССР, США, ФРГ, Швеции, Нидерландах и других странах.

К трудным и еще не полностью решенным проблемам относятся: сложность конструкции и необходимость обеспечения в течение срока эксплуатации двигателя полной герметичности для сохранения рабочего тела (гелия или водорода). Отмечается также высокая стоимость двигателя Стирлинга. Поэтому двигатель Стирлинга пока не может конкурировать с двигателями внутреннего сгорания.

Инерционный двигатель (маховик) — самый древний двигатель, так как гончарный круг, которому более 5 тыс. лет, по существу является маховиком. Идея использования кинетической энергии маховика для движения не нова.

Более 100 лет назад русский инженер В. И. Шуберский исследовал возможности маховика как транспортного двигателя. Однако реализацию эта идея получила в середине XX в.

В этот период в Швейцарии было выпущено 17 городских «жиробусов», которые эксплуатировались в течение 16 лет в Швейцарии.

Основу двигателя на этих машинах представлял маховик массой 1,5 т (10% от массы автобуса), который перед началом движения в течение 25 мин раскручивался электродвигателем до 3000 об/мин и «запасал» 9 кВт-ч энергии.

После раскручивания обратимый электродвигатель, соединенный с маховиком, работал уже как динамомашина, питая тяговые двигатели жиробуса, который мог развивать скорость до 50 км/ч и проходить путь до следующей подзарядки (раскручивания) до 5 км. Фактически скорость жиробуса составляла 20—25 км/ч.

На пути 2,5 км он расходовал 60% запаса энергии и требовал подзарядки. Поэтому зарядные устройства были размещены через 1,0—1,2 км, что соответствовало и требованиям размещения остановок для пассажиров.

Большим преимуществом маховика является его экологическая чистота, имея в виду отсутствие токсичных отходов и практическую бесшумность, а также высокий к. п. д. Но самым главным недостатком следует признать его малую энергоемкость, а следовательно, незначительный пробег между подзарядками.

Тем не менее исследования и эксперименты с этим типом двигателя продолжаются. В США, например, спроектирован супермаховик массой 100 кг, который, по расчетам авторов, при 30 000 об/мин может обеспечить пробег легковому автомобилю 160 км.

Хотя реализация такого проекта принципиально возможна, предстоит решить немало сложных научно-технических задач и определить экономическую целесообразность его применения в массовом производстве.

Оригинальный легковой автомобиль разработан и выпущен в конце 70-х годов в США. Автомобиль шестиместный с экономичным двигателем мощностью 44 кВт. В багажнике смонтирован тяжелый стальной маховик диаметром 950 мм и массой 231 кг.

Вращаясь на магнитных подшипниках в вакууме, маховик при 15 000 об/мин развивает мощность 100 кВт. Через электрогенератор эта мощность передается тяговому электродвигателю, а затем на ведущие передние колеса. Начальная раскрутка маховика производится от внешней электросети.

Данный автомобиль может работать как: обыкновенный на двигателе внутреннего сгорания при остановленном маховике; электромобиль от маховика, обеспечивающего запас хода в 36 км при скорости 48 км/ч; машина от двигателя внутреннего сгорания и маховика одновременно.

В границах населенных пунктов водитель может выключать двигатель и использовать только энергию маховика, а за их пределами — экономичный двигатель внутреннего сгорания, резко повышая мощность силовой установки за счет подключения энергии маховика при кратковременной необходимости ускорить разгон или поднять скорость движения на крутом подъеме, при обгоне и в других ситуациях (до 151 км/ч). Нетрудно понять, что такой сложный автомобиль дорог как в устройстве, так и в эксплуатации.

В Советском Союзе исследуется возможность использования маховиков как источников энергии для транспортных средств. В этом направлении, в частности, ведутся работы в Институте проблем механики АН СССР.

Источник: И.Я. Аксенов, В.И. Аксенов. Транспорт и охрана окружающей среды. Изд-во «Транспорт». Москва. 1986

Ссылка на основную публикацию
Adblock
detector