Асинхронный двигатель 220в с регулятором оборотов

Достаточно часто режим работы вспомогательного механизированного оборудования требует понижения штатных частот вращения. Добиться такого эффекта позволяет регулировка оборотов асинхронного двигателя. Как это сделать своими руками (расчет и сборку), используя стандартные схемы управления или самодельные устройства, попробуем разобраться далее.

Что такое асинхронный двигатель?

Электродвигатели переменного тока нашли довольно широкое применение в различных сферах нашей жизнедеятельности, в подъемно транспортном, обрабатывающем, измерительном оборудовании.

Они используются для превращения электрической энергии, которая поступает от сети, в механическую энергию вращающегося вала. Чаще всего используются именно асинхронные преобразователи переменного тока. В них частота вращения ротора и статора отличаются.

Между этими активными элементами обеспечивается конструктивный воздушный зазор.

И статор, и ротор имеют жесткий сердечник из электротехнической стали (наборного типа, из пластин), выступающий в роли магнитопровода, а также обмотку, которая укладывается в конструктивные пазы сердечника. Именно способ организации или укладки обмотки ротора является ключевым критерием классификации этих машин.

Двигатели с короткозамкнутым ротором (АДКР)

Здесь используется обмотка в виде алюминиевых, медных или латунных стержней, которые вставляются в пазы сердечника и с обеих сторон замыкаются дисками (кольцами).

Тип соединения этих элементов зависит от мощности двигателя: для малых значений используют метод совместной отливки дисков и стержней, а для больших – раздельное изготовление с последующей сваркой между собой.

Обмотка статора подключается с использованием схем «треугольника» или «звезды».

Асинхронный двигатель 220в с регулятором оборотов

Двигатели с фазным ротором

К сети подключается трехфазная обмотка ротора, посредством контактных колец на основном валу и щеток. За основу принимается схема «звезда». На рисунке внизу представлена типичная конструкция такого двигателя.

Асинхронный двигатель 220в с регулятором оборотов

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°.

После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться.

Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

  • Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:
  • n = 60f / p, об/мин
  • где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

Асинхронный двигатель 220в с регулятором оборотов

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:
  1. 2p = Z1 / y,
  2. где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.
  3. Стандартные значения оборотов:
  4. Асинхронный двигатель 220в с регулятором оборотов
  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:
  • 2p = 0,35Z1b / h или 2p = 0,5Di / h,
  • где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.
  • После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Способы изменения оборотов двигателя

Регулировка оборотов любого трехфазного электродвигателя, используемого в подъемно-транспортной технике и оборудовании, позволяет добиться требуемых режимов работы точно и плавно, что далеко не всегда возможно, например, за счет механических редукторов. На практике используется семь основных методов коррекции скорости вращения, которые делятся на два ключевых направления:

  1. Изменение скорости магнитного поля в статоре. Достигается за счет частотного регулирования, переключения числа полюсных пар или коррекции напряжения. Следует добавить, что эти методы применимы для электродвигателей с короткозамкнутым ротором,
  2. Изменение величины скольжения. Этот параметр можно откорректировать за счет питающего напряжения, подключения дополнительного сопротивления в электрическую цепь ротора, применения вентильного каскада или двойного питания. Используется для моделей с фазным ротором.

Наиболее востребованными методами являются регулирование напряжения и частоты (за счет применения преобразователей), а также изменение количества полюсных пар (реализуется путем организации дополнительной обмотки с возможностью переключения).

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Асинхронный двигатель 220в с регулятором оборотов

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Асинхронный двигатель 220в с регулятором оборотов

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

Регулятор оборотов электродвигателя 220В: особенности выбора, принцип действия, способы подключения

В зависимости от режима работы электрический двигатель вращается с различной скоростью. Контроль за процессом преобразования электрического тока в механическое движение осуществляется при помощи специального прибора – регулятора оборотов.

Асинхронный двигатель 220в с регулятором оборотов

Современное производство промышленной и бытовой техники подразумевает наличие какого-либо привода для задействования исполнительных механизмов. Двигатель для работы, как правило, является электрическим.

Рабочим органом может быть отдельная деталь: например, в конструкцию виброплиты входит подвижный компонент, взаимодействующий с обрабатываемой поверхностью. При этом уровень нагрузки может меняться вплоть до 3кВт и больше.

В некоторых промышленных системах используется электродвигатель 220 кВт и мощнее, что требует дополнительной настройки. Чтобы адаптировать систему к выбранному режиму работы, используется регулятор оборотов электродвигателя 220В.

Основным преимуществом регулятора оборотов для электромоторов является плавное изменение темпа вращения движущего вала.

Это не единственная выгода использования настроечной системы в агрегатах мощностью 3000 Вт и выше; также регулятор отсекает скачки напряжения в комплексе энергоснабжения, защищая двигатель и периферийные электрические цепи от перегрузки.

Благодаря этому пусковая установка и все связанные устройства стабильно служат в течение всего заявленного производителем периода эксплуатации.

Основные задачи

Регулятор оборотов в любой электрической установке предназначается для настройки числа оборотов за определенную единицу времени. Обычно измерение скорости вращения производится в оборотах за минуту (об/мин).

Когда нажата кнопка запуска, происходит подача пускового импульса; в этот момент регулятор оборотов настраивает двигатель для мягкого старта, корректируя частоту, силу и напряжение тока.

Определенные технические процедуры подразумевают снижение темпа движения рабочих органов оборудования на конкретную величину.

В зависимости от условий эксплуатации регулятор оборотов, подключаемый к электродвигателю, может выполнять ряд других задач:

  • управление текущим температурным состоянием и уровнем давления в системе без необходимости использования узла обратной связи с приводимыми в движение органами оборудования либо же в случае использования асинхронного двигателя;
  • увеличение степени сохранения электрической энергии без потери мощности. Адаптируя двигатель для плавного пуска, регулятор снижает потери КПД при старте и остановке ротора, в процессе наращивания или снижения скорости и настройки тяги. Если выбран двигатель для работы короткими импульсами (например, воздушный компрессор), который при этом достаточно маленький, наличие регулятора оборотов является необходимостью;
  • асинхронные электродвигатели, находящиеся под высокой нагрузкой на валу, используют регулятор для предотвращения подачи слишком сильного стартового импульса. Это снижает вероятность ложного срабатывания защитной автоматики благодаря уменьшению нагрузки на токопроводящие сети;
  • электрический двигатель для работы в трехфазной сети требует наличия регулятора для стабилизации скорости на определенной величине. Это облегчает осуществление точных технологических операций, от тонкости настройки которых напрямую зависит качество итоговой продукции. Нарушение методики может происходить из-за скачков энергоснабжения или нагрузки на вал. С предустановленным регулятором электродвигатель 220 вольт работает более стабильно;
  • если система имеет стандартную конфигурацию и электромотор питается от сети с напряжением 220В, регулятор оборотов зачастую выполняет только базовые функции – изменение скорости от нуля до допустимого предела. Также сюда относится поддержание крутящего момента при медленном ходе мотора.

Наличие тех или иных возможностей в определенной модели регулятора зависит от его конструкции. Немаловажную роль также играет принцип действия и особенности проектирования.

Асинхронный двигатель 220в с регулятором оборотов

Как выбрать

Чтобы найти ту разновидность регулятора оборотов, которая подстроит двигатель для работы в определенных условиях, необходимо изучить расчетные показатели, которые выдает мотор при штатной нагрузке. Важным нюансом являются условия эксплуатации, с учетом которых изготовлен электродвигатель, а также их способ функционирования и конструкция.

Читайте также:  Гидроопора двигателя что делать

Регуляторы векторного типа сочетаются с коллекторными двигателями. Важно обратить внимание на мощность регулятора, которая должна несколько превышать аналогичный показатель мотора для стабильной и безопасной работы привода.

Векторный тип управления настраивается в зависимости от характера обратной связи, а также показателей постоянного магнитного потока. Скалярное управление рассчитывается от фактической нагрузки на вал двигателя.

Этот способ является более простым, но не отличается надежностью.

Регулятор постоянно защищает двигатель, для чего в нем стоит узел контроля напряжения. Чтобы этот комплекс срабатывал в нужные моменты, следует выбирать модель с широким диапазоном.

Следует проверить, чтобы число и размеры входных контактов соответствовали спецификациям имеющейся разновидности электродвигателя.

Также входное напряжение проходит через аппаратную широтно-импульсную модуляцию, для реализации которой используется ШИМ-регулятор.

Диапазон доступных величин выбирается относительно имеющегося оборудования. К примеру, для простого вентилятора будет достаточно от 500 до 1000 оборотов в минуту. Более быстроходные агрегаты, такие как станки и другие производственные системы, могут вращаться до 3000 об/мин.

Не менее важным техническим нюансом являются габаритные размеры регулятора. Настраивая двигатель для работы в связке с настроечным модулем оборотов, необходимо учитывать наличие свободного пространства для установки последнего. Обычно для монтажа регулятора оборотов предусматривается ниша, полка или свободное место другого характера.

Асинхронный двигатель 220в с регулятором оборотов

Принцип действия

Говоря о бытовых и промышленных устройствах, таких как электропривод для медогонки 220В, подогреватель двигателя 220В с помпой и других системах, стоит помнить, что в момент запуска этих и других электроприводов происходит деформация обмотки силового узла с одновременным его нагревом.

Приемником напряжения выступает контроллер, который осуществляет выпрямление тока через диод. Далее энергия направляется на систему конденсаторов, играющих роль фильтра.

Выходной поток мощности представляет собой ток, проведенный через ШИМ-регулятор и выпущенный на обмотки ротора, настраивая двигатель для работы на определенной частоте вращения.

Настройка оборотов электрического привода медогонки или другого производственного оборудования выполняется несколькими способами изменения параметров подаваемого в обмотки двигателя энергоснабжения:

  • снижение или увеличение показателя напряжения;
  • изменение текущей частоты;
  • регулировка силы тока.

Наиболее часто используемые типы регулировки оборотов:

  • автотрансформаторная система реализована в виде движущегося контакта, который соприкасается с обмоткой. Это изменяет скорость вращения ротора. Такой тип управления используется в подогревателях двигателя 220В с помпой и других системах, где нужна четкая синусоида переменного напряжения и высокое сопротивление вероятной перегрузке;
  • симисторное, или тиристорное, регулирование скорости меняет уровень подаваемого напряжения посредством активации тиристорной пары, собранной встречно, либо же их включение одновременно с симистором. Эта схема применяется не только в промышленных асинхронных электромоторах, но и в небольших бытовых приборах, таких как электрический привод медогонки, диммер, различные переключатели и пр.;
  • внедрение сопротивления выполняется посредством одного или нескольких типов преобразователей – переменных резисторов, разделяющих устройств и др. Эта методика положительно зарекомендовала себя в однофазных конфигурациях моторов, где с ее помощью производится контроль скольжения. Изменение разницы между скоростью якоря и величиной магнитного поля статора эффективно способствует снижению оборотов. Для реализации настройки сопротивлением используются высокомощные электрические двигатели, так как на них можно дать меньше напряжения. При этом стандартное соотношение будет равно до двух раз в меньшую сторону.

Каждый тип управления имеет свои преимущества. Осуществлять выбор необходимо под конкретный двигатель (однофазный, трехфазный и т.д.), а также согласно параметрам потребителя.

Асинхронный двигатель 220в с регулятором оборотов

Способы подключения

Прежде чем начать интеграцию регулятора оборотов, необходимо изучить руководство. Там указан тип и механизм работы имеющейся модели.

Без этой информации можно допустить ошибку и спровоцировать поломку модуля либо двигателя.

Как правило, схема подключения регулятора оборотов не особенно отличается по разновидностям последних, поэтому в руководстве пользователя будет представлен чертеж типовой электроцепи.

Изучив схему интеграции, необходимо понять, как используется метод распиновки. С его помощью определяется количество выводов для полноценного управления имеющейся разновидностью электрического мотора.

Далее проводится сопоставление выходных контактов электродвигателя и цветовых обозначений разъемов регулятора. Необходимо подбирать приборы так, чтобы не оставалось неподключенных выходов. Если какой-то контакт останется неиспользуемым, их можно закоротить, чтобы не нарушилась работа мотора.

Когда все обозначения совпадут, можно начинать соединение и подключение к энергоснабжению.

Управление скоростью вращения однофазных двигателей

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

  • Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:
  • S=(n1-n2)/n2
  • n1 — скорость вращения магнитного поля
  • n2 — скорость вращения ротора
  • При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.
  • Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.
  • При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.
  • Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.
  • На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

  1. На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.
  2. Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.
  3. Преимущества данной схемы:
      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

  • Таким образом изменяется среднеквадратичное значение напряжения.
  • Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).
  • Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.
  • Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:
  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры

Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

  1. Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.
  2. Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.
  3. Плюсы электронного автотрансформатора:
        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт
Читайте также:  Газель ошибка неисправность двигателя 406

Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

  • На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.
  • Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.
  • Однофазные двигатели могут управляться:
  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

  1. В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.
  2. Это модель Optidrive E2
  3. Для стабильного запуска и работы двигателя используются специальные алгоритмы.

  4. При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:
  5. Xc=1/2πfC
  6. f — частота тока
  7. С — ёмкость конденсатора
  8. В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:
  9. Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.
  10. Преимущества специализированного частотного преобразователя:
        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

Использование ЧП для трёхфазных двигателей

  • Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:
  • Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:
  • Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.
  • В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.
  • При работе без конденсатора это приведёт к:
  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Регулировка асинхронного двигателя

Всем здравствуйте.

В сети, да и в общем часто возникает вопрос, как выполнить регулятор скорости вращения вентилятора для асинхронного двигателя? Известно, что мы можем легко регулировать скорость двигателя, используя симистор с фазовым управлением. И также, в литературе содержится информация о том, что асинхронный двигатель вращается со скоростью от нескольких процентов до 20% ниже, чем синхронная скорость.

Поэтому на вопрос о регулировании вращения асинхронного двигателя назревает ответ, инвертор. Однако это устройство является достаточно дорогостоящим, и смысл его выполнять собственными силами является спорным.

Также считается, что использование фазового регулятора мощности с использованием симистора для этой цели невозможно. Однако это убеждение не совсем верно.

Для некоторых двигателей и нагрузок использование симистора с фазовым управлением позволяет регулировать обороты в широком диапазоне.

Доступны интегральные микросхемы в таких простых фазовых регуляторах.

Принимая во внимание ограничения, налагаемые системой фазового регулятора, мы можем очень просто создать нормально работающий регулятор скорости асинхронного двигателя.

Давайте попробуем рассмотреть, что происходит после подключения асинхронного двигателя к типовому димеру, который обычно выполнен в соответствии с схемой, приведенной на рисунке.

Типовая схема регулятора

Рассмотрим случай (рисунок графика), когда симистор включается под углом = 100 после того, как напряжение сети проходит через ноль. Угол проводимости будет около 150 градусов, поэтому симистор отключится под углом около 250 градусов в точке B. Остаточное положительное напряжение останется на конденсаторе C1, поскольку он не полностью разряжается через симистор.

График

В этот момент в системе запуска появляется отрицательное напряжение, которое сначала заряжает остаточное напряжение до С1, а затем запускает триод под углом около 350.

Второе включение симистора произойдет при очень низком напряжении, и угол проводимости будет намного меньше, чем при первом. В следующем периоде условия аналогичны, поэтому значительная асимметрия активации симистора в отрицательном и положительном полупериодах сохраняется.

Такая асимметрия недопустима в схеме управления двигателем, она может быть даже опасна из-за насыщения магнитной системы.

Четыре стандартных диода, два резистора и потенциометр были добавлены в стандартную схему димера, которая показана на рисунке.

Принципиальная схема регулятораПринципиальная схема регулятора

В первом полупериоде система ведет себя так же, как схема из предыдущего рисунка. Однако после появления отрицательного напряжения остаточное положительное напряжение на С1 разряжается через диод D4 и резистор R2.

Диод D3 предотвращает дальнейшую зарядку с отрицательным напряжением C1, даже после того, как положительное напряжение было разряжено. Элементы D1, D2 и R1 выполняют аналогичную функцию в положительном полупериоде.

В результате работы схемы симметризации после нескольких периодов асимметрия устраняется.

Элементы R5 и C2 сглаживают выбросы напряжения, возникающие после отключения симистора в точке B. Без них быстрое увеличение напряжения на выходе может привести к включению симистора.

Резистор R4 увеличивает время запускающего импульса.

Без него это время будет определяться емкостью С1 и внутренними сопротивлениями элементов С1, Т1 и Т2 и будет слишком коротким, чтобы правильно запустить симистор.

Ток на индуктивной нагрузке после включения симистора медленно увеличивается, при слишком коротком импульсе он может не достигнуть значения IL «защелкивающегося» тока, и симистор отключится после импульса затвора. IL для типовых симисторов составляет от нескольких до нескольких десятков миллиампер.

Схема может быть собрана на печатной плате, показанной на рисунке в тексте.

Печатная плата

Стоить обратить внимание на тот факт, что во время работы присутствует полное напряжение сети. Так что не переусердствуйте с миниатюризацией устройства. Не исключено, что регулятор будет работать в условиях повышенной влажности и, возможно, даже химически агрессивных. Поэтому расстояние между дорожками должно быть на значительном расстоянии, что влечет за собой размер платы.

В качестве R7 стоит использовать потенциометр с пластиковой осью или удлинителем с изолированной осью. В зависимости от мощности управляемого двигателя, симистор должен быть оснащен подходящим радиатором.

Для защиты от протекания чрезмерного тока через не рабочий двигатель стоит выбрать сопротивление потенциометра, например, добавив параллельный резистор. Это может произойти, когда мы включаем потенциометр на низкую скорость.

Однако, как правило, это не опасно для двигателя из-за низкого тока, протекающего в обмотках. Всем спасибо.

Регулятор оборотов электродвигателя 220в без потери

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель.

В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет.

Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер.

Его мощность значительно выше, чем у асинхронного, а цена довольно низкая.

Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Читайте также:  N52b25 сколько масло заливать в двигатель

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост.

Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно.

Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора.

Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками.

Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Схемы

  • Схемы
  • Схемы
  • Найдено: 4,459 Вывод: 1-10
  1. Мощный понижающий DC-DC преобразователь 5 В/7 А с широким диапазоном входного напряжения

    Схемы Питание Texas Instruments LM5116

    Rajkumar Sharma electronics-lab.com В статье мы рассмотрим конструкцию модуля, представляющего собой мощный неизолированный понижающий DC-DC преобразователь с выходным напряжением 5 В и выходным током до 7 А (Рисунок 1). Основные отличительные …

    50V to 5V/7A Synchronous Buck (Step-down) Converter

    Rajkumar Sharma electronics-lab.com This module is a non-isolated 7 A DC-DC converter. The module can convert any DC voltage between 7 V to 50 V to a 5 V DC with load current up to 7 A (Figure 1). The project has been designed around LM5116 Wide …

    30-04-2020

  2. Миллиомметр с ЖК-индикатором на Arduino своими руками
    1. Схемы Arduino ·
    2. Измерения MCP3422 LT3092 ULN2003
    3. У каждого радиолюбителя, инженера, разработчика есть различного рода измерительные приборы. Это могут быть как сложные многофункциональные приборы промышленного изготовления, так и простые вольтметры, амперметры, измерители емкости аккумуляторов, …
    4. Arduino based Milliohm Meter with LCD display

    Emmanuel Odunlade electronics-lab.com One of the best things about being a maker is the ability to make your own tools. We have covered the development of several electronics tools in past, from voltmeters to battery testers. For today’s …

    24-04-2020

  3. Генератор с независимой регулировкой ширины и частоты импульсов
    • Схемы Генераторы Texas Instruments LM555
    • Журнал РАДИОЛОЦМАН, январь 2020 Davinder Oberoi EDN Автоколебательный мультивибратор является популярным источником прямоугольных импульсов, полезным для многих приложений, таких как схемы синхронизации и звуковые извещатели. Один из наиболее …
    • Generator has independent pulse width, frequency
    • Davinder Oberoi EDN A common circuit in electronics is the square-wave, astable multivibrator (one-shot), which is useful for various purposes, such as timing circuits and audible alarms. The most common way to generate the desired square wave is …

      Лужение и пайка кузова автомобиля

    20-04-2020

  4. Монитор токового шунта в положительном полюсе нагрузки уменьшает ошибку
    1. Схемы Измерения ·
    2. Питание Analog Devices AD8603
    3. Журнал РАДИОЛОЦМАН, январь 2020 Marián Štofka EDN Схема на Рисунке 1 является альтернативой монитору токового шунта, описанному в предыдущей статье [ 1 ]. В той схеме использовалась микросхема AD8212 компании Analog Devices с внешним …
    4. High-side current-shunt monitor offers reduced error

    Marián Štofka EDN The circuit in Figure 1 is an alternative to a high-side current monitor in a recent Design Idea (Reference 1). That monitor uses the Analog Devices AD8212 and an external high-voltage bipolar PNP transistor. The …

    20-04-2020

  1. Оптоэлектронный реверсивный канал передачи данных
    • Схемы Интерфейсы Broadcom HCPL-181
    • Журнал РАДИОЛОЦМАН, январь 2020 Михаил Шустов, г. Томск Предложены варианты схем реализации оптоэлектронных реверсивных каналов передачи цифровой и аналоговой информации Реверсивные каналы передачи данных позволяют производить передачу аналоговой …
    • 19-04-2020
  2. Схема простого FSK модулятора
    1. Схемы Цифровые ON Semiconductor NL27WZ14
    2. Журнал РАДИОЛОЦМАН, январь 2020 Shyam Tiwari EDN При необходимости создания компактной телеметрической системы возникает проблема разработки небольшого легкого устройства с минимальным числом компонентов. Сопряжение с последовательными данными из …
    3. Circuit makes simple FSK modulator
    4. by Shyam Tiwari EDN The need for a compact telemetry system poses a challenge for designing a small, light, low-component-count system. Interfacing serial data from the microprocessor is also difficult because most low-cost RF transmitters do not …
    5. 18-04-2020
  3. Делаем высокочувствительный детектор электромагнитного поля
    • Схемы Arduino ·
    • Измерения· Начинающим
    • ·

    Применение микроконтроллеров

Mirko Pavleski Arduino.cc Простой в сборке, но высокочувствительный, детектор электромагнитного поля на Arduino Это простое устройство способно обнаруживать даже очень слабые электромагнитные поля. Относительная напряженность поля отображается в …

DIY Ultra Sensitive EMF Detector

Mirko Pavleski Arduino.cc A simple to build, but very sensitive electromagnetic field detector. This is a simple device capable of detecting very weak electromagnetic fields (Figure 1). The relative field intensity is displayed on the LCD display …

18-04-2020

  • Монитор токового шунта компенсирует ошибки
    1. Схемы Аналоговая схемотехника ·
    2. Измерения Analog Devices AD8212
    3. Журнал РАДИОЛОЦМАН, январь 2020 Chau Tran и Paul Mullins, Analog Devices EDN Иногда бывает необходимо измерить токи нагрузки до 5 А при наличии синфазного напряжения, достигающего 500 В. Для этого можно воспользоваться высоковольтным монитором …
    4. Current monitor compensates for errors

      Регулировка и настройка плуга на мотоблоке

    Chau Tran and Paul Mullins, Analog Devices EDN You sometimes need to measure load currents as large as 5 A in the presence of a common-mode voltage as high as 500 V. To do so, you can use Analog Devices’ AD8212 high-voltage current-shunt …

    17-04-2020

  • Силовой модуль 20 А/40 В для управления бесколлекторными электродвигателями

    Схемы Силовая электроника ON Semiconductor STK984-090A

    Rajkumar Sharma Electronics-lab.com Проект, рассмотренный в статье, выполнен на микросхеме STK984-090A компании ON Semiconductor, которая представляет собой интегральный инвертор с номинальным током 20 А и напряжением питания до 40 В (Рисунок 1). …

    20A/40V Integrated Power Module for DC Brushless Motors (BLDC)

  • Ссылка на основную публикацию
    Adblock
    detector