Автоматическое поддержание оборотов двигателя

В большинстве вращающихся электронных проборов используется коллекторный двигатель. Он позволяет получить необходимый в некоторых случаях высокий пусковой момент. Принцип его работы основан на вращении ротора под воздействием магнитного поля статора, на который подается напряжение.

Автоматическое поддержание оборотов двигателя

Для того чтобы получить подходящую скорость вращения без потери мощности необходимо устройство контроля за скоростью вращения. Поэтому в данной статье будет разобрано, как сделать регулятор оборотов двигателя своими руками.

Автоматическое поддержание оборотов двигателя

Сложности и особенности

Сложность создания регулятора оборотов коллекторного двигателя  заключается в том, что устройство потребляет не только активную, но и реактивную мощность, которая увеличивается при повышении оборотов. Главной задачей является выравнивание и сокращение разрыва между двумя этими характеристиками.

Автоматическое поддержание оборотов двигателя

Мощность коллекторного двигателя это произведение потребляемого им тока, на напряжение сети. Общее ее значение складывается из активной и реактивной.

Автоматическое поддержание оборотов двигателя

В домашних условиях довольно тяжело привести к пустые потери к нуля. Для этого необходимо, чтобы прибор испытывал только активную нагрузку, что можно получить, только используя полупроводниковые резисторы.

Автоматическое поддержание оборотов двигателя

Принцип работы

Для сборки лучше всего выбрать тиристорный преобразователь, он позволит осуществлять изменение режима работы без существенных потерь.

Автоматическое поддержание оборотов двигателя Автоматическое поддержание оборотов двигателя Автоматическое поддержание оборотов двигателя Автоматическое поддержание оборотов двигателя Автоматическое поддержание оборотов двигателя

К тому же, благодаря нему будут настроены такие функции как:

  • Разгон-торможение.
  • Жесткое регулирование характеристик.
  • Переключение на реверсивное движение.

К тому же у него импульсно-фазовое управление. Которое, позволяет не терять момент вращения ротора, не увеличивая потери на реактивной характеристике.

Схема регулятора оборотов будет состоять из следующих ключевых узлов:

  • Управляемый выпрямитель сигнала.
  • Блок регулирования.
  • Система обратной связи.
  • Регулятор мощности сети.

Двигатель

В зависимости от принципа управления и характеристик, существуют различные типы двигателей. Остановиться стоит только на двух, в одном используется обмотка возбуждения, а в другом постоянный магнит. В зависимости от выполняемой работы нужно правильно подобрать тип агрегата.

Если необходимо регулировать частоту вращения от минимального до конкретного значения, например в дрели. То лучше выбирать схему с постоянным магнитом.

В тех же случаях, когда минимальное значение вращения будет равняться 0 оборотов, лучше использовать обмотку возбуждения. Такая схема подойдет для регуляторов оборотов кулера компьютера.

  • Двигатель конструктивно состоит из следующих узлов:
  • Якорь, он же ротор, на котором имеется обмотка.
  • Коллектор, который выпрямляет ток.
  • Статор, обмоткой которого создается магнитное поле.

Регулятор

  1. Закончив с двигателем и разобравшись с его показателями и режимом работы можно делать регулятор оборотов асинхронного двигателя своими руками.

  2. Необходимо добиться следующих целей:
  • Регулировка должна осуществляться от нуля оборотов до максимально возможных значений.
  • На низких скоростях крутящий момент должен быть самым высоким.
  • Нужно добиться плавного изменения количества оборотов.

Особенности подключения

При подключении проводов и соединении основных узлов между собой следует придерживаться следующим рекомендаций:

  • Провода не должны быть слишком длинными. Особенно если речь идет о регуляторе оборотов бесколлекторного двигателя.
  • Обмотка не должна быть повреждена.
  • Места соединения должны быть надежно запаяны и изолированы друг от друга.

Пошаговая инструкция

Классическая схема синистора работает по принципу зарядки конденсатора через мало ёмкий резистор. После того, как напряжение между обкладками достигнет нужного значения, симистор начинает пропускать ток к нагрузке.

Таким образом, можно контролировать емкость конденсатора, изменяя напряжение, которое пойдет на нагрузку.  Для этого отлично подойдет реостат, который устанавливается на место резистора.

  • К сожалению, такая схема быстро нагревается из-за чего нужно устанавливать дополнительный радиатор позволяющий эффективно отводить тепло.

Более подходящей схемой, позволяющей сохранить потерянную мощность и точнее контролировать работу, является коммутация с силовыми резисторами. Их работа основана многократном открытии и закрытии за один период электрической синусоиды.

Данная установка может осуществлять работу от внутреннего накопителя с напряжением 12 В и внешнего 220 В. Однако в таком случае требуется гасящая схема.

В таком режиме работы можно изменять пороговую мощность, это напрямую влияет на мощность работы ротора. Силовые резисторы выставляются на определенные показания входящего тока, собирая его в нужных объемах.

Фото регулятора оборотов своими руками

  1. Также рекомендуем просмотреть:

Регулировка оборотов асинхронного двигателя своими руками (схема, видео)

Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

  1. скорость электромагнитного поля статора;
  2. скольжение двигателя.

Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

  • частоты,
  • количества полюсных пар,
  • напряжения.

В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

  • изменение напряжения питания;
  • присоединение элемента сопротивления в цепь ротора;
  • использование вентильного каскада;
  • применение двойного питания.

Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

Частота вращения

Частоту оборотов АДКР (N) вычисляют по формуле: 60F (частота напряжения в сети)/p (число полюсных пар статора, измеряется в об/мин).

Обычно тех. характеристики указаны на корпусе двигателя. Если такой информации по какой-то причине нет, то число оборотов вычисляют по другим признакам:

  • количеству катушек;
  • учитывается диаметральный шаг отмотки;
  • количеству полюсов по сердечнику статора.

Частотное регулирование

Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

Однофазные же двигатели управляются:

  • специальными однофазными преобразователями частоты;
  • 3-фазными преобразователями частоты с устранением конденсатора.

Схемы регуляторов оборотов асинхронного двигателя

Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно.

Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника.

От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

  Особенности, виды и принцип работы поплавковых уровнемеров

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:

Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:

Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.

  • Проверьте цветовую маркировку
  • Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.
  • Источник

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Читайте также:  Lexus rx350 двигатель характеристики

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания.

Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря.

Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

https://www.youtube.com/watch?v=E5QkaJ2qnxY\u0026t=23s

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в.

Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума.

Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Простой регулятор мощности на 220 Вольт из 5 деталей

Это схема прекрасно работает с такими приборами, как болгарки, дрели, простые лампочки, пылесосы, нагревательные плиты, тены, коллекторные двигатели, первичные обмотки трансформаторов и так далее…

Я лично для себя собирал данное устройство, чтобы регулировать питание первичной обмотки зарядного устройства для автомобильного аккумулятора, тем самым получая нужные мне параметры на выходе.

Итак, для этого нам потребуется симистор, у меня он был уже прикрученный к радиатору. Симистор у меня был BТА41-600, можно взять и другой, под свои нужды.

  • Резистор 560 ом
  • Динистор, вытащил с энергосберегающей лампы.
  • Конденсатор 0.1 мкф 400 вольт
  • Переменный резистор на 470 кОм, можно взять поменьше.

Вот схема данного устройства, она довольно маленькая

Автоматическое регулирование частоты вращения

Частота вращения ДВС регулируется изменением количества топлива, подаваемого в рабочие цилиндры. Различают два основных вида регулирования: количественное и качественное.

Количественное регулирование осуществляется у карбюраторных двигателей: в зависимости от режима работы двигателя в его цилиндры подается различное количество рабочей смеси (практически постоянного состава), т. е. с примерно одинаковым коэффициентом избытка воздуха.

Качественное регулирование применяется у дизелей.

Суть его состоит в том, что независимо от режима работы двигателя в его цилиндры за каждый цикл поступает практически неизменное количество воздуха при различной подаче топлива.

Так, при снижении мощности двигателя и соответственно количества подаваемого топлива со 100 до 25% коэффициент избытка воздуха возрастет в четыре раза, т. е. качество рабочей смеси в цилиндрах резко изменится.

Условия работы дизелей, используемых на судне в качестве главных и вспомогательных двигателей, отличаются между собой.

Режим работы главного двигателя зависит не только от количества подаваемого в его цилиндры топлива, но и от элементов винта и сопротивления движению судна. Мощность и частота вращения двигателя связаны между собой и изменяются одновременно с изменением количества подаваемого топлива или работы, совершаемой гребным винтом. Последний является своего рода регулятором для двигателя.

Если баланс мощности, развиваемой двигателем и потребляемой гребным винтом, нарушается, то дизель переходит на другой режим, при котором этот баланс восстанавливается.

Например, при следовании судна против ветра или на мелководье сопротивление увеличивается, что приводит к снижению частоты вращения двигателя.

И наоборот, при плавании судна в балласте сопротивление его движению уменьшается и частота вращения дизеля возрастает. Однако в обоих случаях двигатель будет работать на установившемся режиме.

Таким образом, главный двигатель, работающий непосредственно на гребной винт, не нуждается в регуляторе, который поддерживал бы постоянную частоту вращения. Больше того, при увеличении сопротивления движению судна такой регулятор был бы вреден, так как попытка сохранить неизменной частоту вращения приводила бы к повышенной подаче топлива и, как следствие этого, к перегрузке двигателя.

Однако при работе судна на волнении в случае оголения гребного винта частота вращения может недопустимо возрасти, что чревато поломкой двигателя. Если же случится обрыв гребного винта или его лопастей, поломка валопровода и т. п., то дизель пойдет «вразнос» и может вообще разрушиться.

Итак, на главном двигателе, работающем на гребной винт, необходим автоматический регулятор, который ограничивал бы частоту вращения, т. е. предельно допустимый скоростной режим. Вместе с тем, этот регулятор не должен оказывать влияния на подачу топлива при работе двигателя на любом скоростном режиме ниже предельно допустимого. Такие регуляторы называются однорежимными или предельными.

Отличительной особенностью их конструкции является отсутствие постоянной связи между регулятором и рейкой топливных насосов. Это позволяет изменять подачу топлива вручную с поста управления (с ЦПУ, мостика) в широких пределах.

Читайте также:  Двигатель а80а2 технические характеристики

Но при достижении двигателем заданного скоростного режима регулятор начинает оказывать воздействие на топливную рейку, не допуская дальнейшего увеличения частоты вращения.

Значение предельной частоты вращения, которую регулятор допускает, задают соответствующим затягом его пружины.

Дизель-генераторы, включая главные дизель-генераторы, вырабатывают электрический ток определенного напряжения, а генераторы переменного тока — и определенной частоты.

Как напряжение, так и частота тока зависят от частоты вращения ротора генератора, т. е. от частоты вращения дизеля.

Для получения неизменного напряжения и частоты дизель должен работать с постоянной частотой вращения при любой нагрузке.

Таким образом, регулятор дизель-генератора должен автоматически поддерживать постоянным заданный скоростной режим, увеличивая подачу топлива при увеличении нагрузки и уменьшая эту подачу при уменьшении нагрузки.

Кроме этого, у регулятора должно быть предусмотрено устройство, позволяющее задавать необходимую частоту вращения дизеля, которую регулятор должен поддерживать неизменной. Такие регуляторы носят название всережимных.

Их конструктивное отличие заключается в том, что между регулятором и тягой топливных насосов двигателя существует жесткая связь. Рукояткой с поста управления непосредственно не воздействуют на топливную тягу, а изменяют затяг пружины регулятора. Каждому скоростному режиму соответствует определенный затяг пружины.

Сопоставляя оба рассмотренных регулятора, отметим, что их принципиальное различие заключается в том, каким образом регулятор связан с рейкой топливных насосов. При отсутствии постоянной связи регулятор будет однорежимным; если постоянная связь имеется, — всережимным.

У применяемых на главных двигателях регуляторах нередко предусматривается возможность использовать их как в качестве однорежимных, так и всережимных; такие регуляторы называются всережимно-предельными. Переключение регулятора с одной схемы на другую осуществляется изменением характера его связи с топливной рейкой, что предусматривается конструкцией регулятора.

Целесообразность применения такого регулятора объясняется различными условиями эксплуатации главного двигателя. При нормальных условиях плавания регулятор включается как предельный и подачей топлива управляют с поста управления.

При волнении моря, чтобы предотвратить резкие колебания частоты вращения двигателя, регулятор включают как всережимный, несколько ослабляя затяг его пружины.

Это позволяет эксплуатировать двигатель при качке судна на постоянной, хотя и пониженной частоте вращения.

Следует заметить, что при использовании всережимного регулятора, в случае чрезмерного повышения нагрузки, продолжение работы дизеля при неизменной частоте вращения будет приводить к его перегрузке.

Чтобы этого не происходило, в конструкции всережимных регуляторов предусматривают устройство, ограничивающее подачу топлива (упор максимальной подачи). Такой регулятор называется всережимным регулятором с ограничением по нагрузке.

При увеличении нагрузки он поддерживает заданную частоту вращения путем увеличения подачи топлива до определенного предела. По достижении предельной нагрузки дальнейшее увеличение подачи топлива не происходит, и частота вращения двигателя начинает снижаться.

Это предотвращает возможную поломку двигателя. Всережимные регуляторы с ограничением по нагрузке применяют на дизель-генераторах.

И, наконец, рассмотрим, как будет происходить изменение подачи топлива у двигателя, снабженного всережимным регулятором с ограничением по нагрузке при переводе его на более высокий скоростной режим, не превышающий, однако, допускаемого по нагрузке.

Как только рукояткой будет увеличен затяг пружины, возникает несоответствие между частотой вращения двигателя в данный момент и задаваемой регулятором.

Это приведет к тому, что регулятор сразу начнет увеличивать подачу топлива до максимального значения и двигатель, прежде чем достичь заданной частоты вращения, будет работать какое- то время на предельной подаче топлива.

Чтобы этого не происходило, в регуляторе должен быть предусмотрен еще один ограничитель, связанный с рукояткой поста управления. Тогда при переходе на более высокий скоростной режим количество подаваемого топлива будет ограничиваться не упором максимальной подачи, а этим ограничителем.

Его обычно настраивают так, чтобы допускаемая им подача топлива не превышала ту, которая соответствует задаваемому скоростному режиму более чем на 10—15%. После выхода двигателя на новую частоту вращения в случае дальнейшего увеличения нагрузки подача топлива будет ограничиваться не упором максимальной подачи, а этим ограничителем.

Разумеется, если нагрузка, соответствующая задаваемой частоте вращения, будет близкой к предельной, то ограничение подачи топлива как на переходном режиме, так и после выхода двигателя на заданную частоту вращения осуществляется упором максимальной подачи.

Такой регулятор называют всережимным регулятором с ограничением по нагрузке и по задаваемым и фактическим оборотам.

Если у подобного регулятора отсутствует упор максимальной подачи, то его называют всережимным регулятором с ограничением по задаваемым и фактическим оборотам.

Регуляторы этих типов применяются для главных двигателей. Для маломощных высокооборотных дизелей, работающих на потребители через разобщительную муфту, применяются регуляторы называемые двухрежимными, которые, кроме ограничения nмакс, автоматически поддерживают сниженную частоту вращения холостого хода.

Типы регуляторов оборотов с поддержанием мощности: коллекторный и асинхронный двигатели и варианты регулировки

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер.

Его мощность значительно выше, чем у асинхронного, а цена довольно низкая.

Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост.

Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно.

Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Читайте также:  Chevrolet niva двигатель не заводится

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора.

Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками.

Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет.

Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В.

Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А.

В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом.

Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Асинхронный двигатель и регулятор оборотов

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями.

Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер.

Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

Схема регулятора оборотов коллекторного двигателя 220в

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

  • Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.
  • Декор дня рождения своими руками
  • Закрыть…

Ковбойские остроносые сапогиПринцип работы самодельного замка заключается в следующем. В одной его половине находится постоянный магнит. а в другой — металлическая пластина. Одна из них крепится к двери.

Вторая, с удаленной металлической пластиной, оснащается герконом КЭМ-1 и крепится к дверной коробке. Если дверь находится в закрытом положении, две части замка прижимаются, магнит оказывает действие на геркон, замыкая его контакты.

Если же дверь открывается, магнит уходит, и контакты геркона размыкаются.

Батарея, системный блок компьютера, даже блок питания для ноутбука — это все лучшие друзья. Я уже молчу, про такие хорошие грелки, как мы с мужем.

Берите наполнитель и набивайте куклу. Когда полностью равномерно распределите набивку, зашейте изделие. Ручки необходимо пришивать к туловищу практически около самой шеи.

Из одной паллеты, отшлифованной, пропитанной и лакированной, получается садовый столик вроде журнального, слева на рис.

Если в наличии есть пара, из них буквально за полчаса можно сделать настенный рабочий стол-стеллаж, в центре и справа.

Цепи для него также можно сплести самому из мягкой проволоки, обтянутой трубкой из ПВХ или, лучше, термоусаживаемой. Для полного поднятия столешницы мелкий инструмент укладывают на полку настенной паллеты.

Ну а если стеклянную чашу, вазу, конфетницу, сосуд для пунша или обыкновенные бокалы наполнить водой, разбросав на дне морскую гальку, и отпустить в «свободное плавание» свечи-таблетки, получим волшебную подсветку для романтического Нового года. Для более интересного и неожиданного эффекта можно поэкспериментировать с цветом воды.Как производится установка шипов на резину?

Игрушки ручной работы для детей — это красиво, дешево и приятно. Каждый ребенок нуждается в оригинальных и обучающих игрушках, но не всегда есть возможность их приобрести. Сегодня мы покажем вам 5 примеров веселых игрушек, которые вы можете сделать самостоятельно. Они могут быть сделаны из картона, бумаги или дерева. В общем вдохновляйтесь и чаще радуйте своих детей.

Для основания такой конструкции можно использовать толстую фанеру, а для её верхней части – поликарбонат. Найти в сети солнечные батареи сегодня тоже не проблема.

Внимание! При стыковке панелей не стоит прилагать слишком большие усилия, вы можете повредить место стыка. Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.

Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.

Для изготовления кормушки своими руками нам потребуется:

Расчет древесины. Доски, носящие название клепки, имеют двояковыпуклые стороны для придания бондарному изделию выпуклости. Чтобы их сделать такими, нужно взять нижнюю часть ствола дерева и расколоть подобием рубки дров.

Если его аккуратно пилить, то нарушится природная целостность волокон, что плохо для такого изделия. Сразу приступать к фигурному выпиливанию не стоит – поленья нужно просушить в течение 2 месяцев.

Причем сушить не под палящим солнцем, а в темном прохладном помещении.

Как плести браслеты из шнурков

Тот факт, что большинство новогодних костюмов для детей дошкольного возраста легко шьются на основе комбинезона, может значительно сузить и облегчить творческий поиск.

Если научится шить комбинезон — основу для новогоднего костюма и придумать (почерпнуть), смастерить своими руками декоративные элементы к нему, то можно сделать удивительные и довольно интересные модели новогодних нарядов для детей.

Главное заранее все продумать до мелочей, вооружится знаниями по теме — чтобы результат труда приятно удивил и порадовал всех.

  1. Проектирование шкафа-купе
  2. Картинки
  3. Подарок маме на день рождения своими руками фото инструкция
Ссылка на основную публикацию
Adblock
detector