Датчик схема принципиальная двигатель

Схемы датчиков движения и принцип их работы, схемы подключения

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем.

Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач.

Датчики движения иногда называют датчикам присутствия.

Датчик схема принципиальная двигатель

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Датчик схема принципиальная двигатель

Контактные

Самый простой вариант датчика движения – использовать концевой выключатель или геркон. Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля.

Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение.

Такая схема изображена ниже.

Датчик схема принципиальная двигатель

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. ИК датчик движения стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания. Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Датчик схема принципиальная двигатель

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Датчик схема принципиальная двигатель

Правильнее будет сказать – многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками?

Самый распространенный вариант – это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно.

Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал.

При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать одновибратор на NE555, микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

Датчик схема принципиальная двигатель

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Датчик схема принципиальная двигатель

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней – микросхема, её обвязка, справа два подстроечных резистора, где верхний – время задержки сигнала, а нижний – чувствительность.

В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром.

Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

  Устройство спидометра легкового автомобиляДатчик схема принципиальная двигатель

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны. Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона.

Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции – можно использовать его в паре с микроконтроллером, например платой Ардуино. Ниже представлена схема подключения и программный код.

Датчик оборотов двигателя для контроллера

Понадобилось на работе контролировать обороты двигателя. Решили использовать датчик Холла. На муфту установленную на валу двигателя приклеили пару неодимовых магнитов. Для датчика Холла сделали схему на компараторе, чтобы фиксировать моменты прохождения магнита напротив датчика. Схема приведена на рис.1

Датчик схема принципиальная двигатель

Описание работы

Датчик Холла AHSS49 на каждый проход магнита, закрепленного на валу двигателя формирует импульс амплитудой около 1 вольта, со смещением относительно земляной шины на +2,5 В.

Полученный сигнал поступает на вход компаратора IC1 LM311, который формирует управляющие импульсы для выходной опто-развязки OC1 PC817, выход которой присоединяется ко входу контроллера, подтянутому через сопротивление 1-2 кОм к питанию контроллера.

В промышленных контроллерах, такие резисторы предустановлены и требуется только конфигурирование входных цепей. Порог срабатывания компаратора IC1 настроен на напряжение 2,6 В.

Настраивая компаратор на более высокое напряжение можно получить более узкие импульсы на выходе — это связано с тем, что импульсы на выходе датчика Холла имеют форму близкую к треугольной.

Конденсаторы С1, С2 предназначены для снижения импульсных помех и исключения ложных срабатываний компаратора.

Схема была смакетирована на самодельной монтажной плате см. рис.2 Для публикации была подготовлена разводка печатной платы см. Приложения к статье.

Датчик схема принципиальная двигатель

Установка датчика около муфты вала двигателя см.рис.3 Датчик Холла был установлен таким образом, чтоб при прохождении магнитов установленных на муфте они оказывались на расстоянии пимерно 5 мм напротив датчика Холла.

При установке на валу двух магнитов результирующая частота на выходе платы удваивается. При установке 4 магнитов возрастает в 4 раза. Большее число магнитов устанавливается для подсчета частоты вращения низко-оборотных двигателей.

Соответственно, при измерении частоты вращения двигателя результат делится на число магнитов установленных на валу двигателя.

Рис.3 Установка датчика на кронштейне вблизи муфты на валу двигателя

Выход тахометра может быть организован несколькими способами в зависимости от решаемых задач

Схема приведенная на рис. 1 при работе с промышленными контроллерами может не дать устойчивого срабатывания на каждый импульс поскольку 2 p-n перехода опто-развязки PC817 при полном открытии будут давать падение напряжения около 1 В. И , в этом случае, дискретные входы пром.

контроллера выполненные на КМОП микросхемах будут срабатывать неустойчиво, в этом случае имеет смысл реализовать схему выхода на полевом N-канальном транзисторе. Вариант схемы с выходом на полевом N-канальном транзисторе приведен на рис.4 .

Читайте также:  Двигатель n20b20a технические характеристики

Для управления полевым транзистором пришлось задействовать дополнительный вход контроллера (клемма Х1). В случае если входов контроллера для этого не хватает, можно использовать дополнительный источник питания + 5В, подключив его к клемме Х1.

Рабочий вход (клемма Х2) замыкается полевым транзистором и сформированные импульсы поступают на вход контроллера Х2.

  • Рис.4 Вариант схемы с выходом на полевом N-канальном транзисторе с дополнительной гальванической развязкой
  • Если дополнительная гальваническая развязка выхода не нужна, можно использовать схему рис.5
  • Рис.5 Вариант схемы с выходом на полевом N-канальном транзисторе без дополнительной опторазвязки

Рис. 6 Осциллограмма выходного сигнала для варианта схемы см. рис. 4

Как работает инжекторный двигатель?

Инжекторный двигатель – это довольно сложный механизм, работа которого должна быть хорошо отлажена, чтобы получить от него максимальную производительность. В статье подробно рассмотрен принцип работы инжекторного двигателя.

Датчики двигателя

Электронная система автомобиля состоит из блоков управления и многочисленных датчиков, объединенных в единую сеть разветвленной паутиной проводки.

Взаимодействие между элементами этой цепи осуществляется посредством электрических сигналов с определенными параметрами. Работа всех деталей характеризуется механической энергией.

Преобразование механической энергии движения в электронные импульсы, с последующей передачей на ЭБУ – это задача датчиков.

Как работают датчики двигателя и как их проверять

Преобразовываются в импульсы параметры таких физических явлений, как:

  • Температура различных жидкостей, газов и агрегатов
  • Давление в различных средах и системах
  • Скорость, направление и количество валовых оборотов
  • Концентрация веществ во всевозможных смесях (жидкости и газов)
  • Количественные и объемные параметры воздушного потока
  • Относительное пространственное положение подвижных деталей
  • Вибрационные колебания и другие факторыДатчик схема принципиальная двигатель

Допустим, нужно протестировать какой-то датчик. С ЭБУ он получает напряжение в 5В.

Подключив диагностическое оборудование (автосканеры и мотортестеры) к проводам соединения датчика с блоком, можно видеть «картину» передаваемого сигнала.

Сканеры позволяют оценить качество сигналов в общих чертах, к тому же, они не применимы к старым моделям автомобилей. Мотортестер же, дает точное понятие о мельчайших деталях, хотя требуется больше труда в его использовании.

Схема включения датчиков в электронную систему ЭБУ

Эффективное проведение диагностики двигателя, напрямую зависит от понимания особенностей включения его датчиков в электронную цепь системы.

Общий провод электрической цепи автомобиля («масса») объединяет кузов и мотор, и подключается к отрицательному электроду аккумулятора. Так вот, к этому проводу соединяется и блок, и датчик.

Если соединить датчик в произвольной точке этого провода (соответственно, другой конец соединить с ЭБУ), то в зону действия датчика попадает интервал общей сети, где одновременно с его слабым напряжением, проходят сигналы сильного напряжения (например, стеклоподъемников).

Это создает большие помехи, приводя к искажению переданной информации.Датчик схема принципиальная двигатель

Выход один – соединение прямо к выходу «массы» ЭБУ, который уже имеет соединение с «массой» кузова. Из всех датчиков провода входят в блок, там соединяются с «массой». Тем самым устраняются помехи на пути передачи сигнала.

Проводка датчиков, ответственных за наиболее точную информацию (к примеру, ДПДЗ), снабжена экраном, в виде фольговой оплетки, предназначенным дополнительно глушить возможные помехи.

Разновидности датчиков двигателя

Различие в основных принципах работы, дает нам право, классифицировать датчики следующим образом:

  1. Потенциометры или датчики положения

Конструкция состоит из резистивной дугообразной дорожки, с одной стороны соединенной с «массой», а другой получает питание. Если на этот выход подать напряжение 12В, то на противоположном выходе создается нулевое напряжение. Скользящий по дуге, ползунок снимает показания напряжения на всем участке.

По мере прохождения от одного конца к другому, напряжение на нем меняется то 12В до 0. Эти изменения напряжения и есть сигналы, передаваемые в ЭБУ.Датчик схема принципиальная двигатель

  1. Пьезоэлектрические
  2. Терморезистивные или температурные датчики. Это полупроводниковые резисторы, у которых изменение температуры, приводит к изменению напряжения в полупроводниках. Эти перепады фиксируются в ЭБУ, на основании чего регулируется работа систем.
  3. Термоанемометрические или датчики давления

Тестирование датчиков двигателя

Датчик положения дроссельной заслонки – яркий представитель потенциометрического типа устройства. Он вживлен в ось заслонки. Надавливая на педаль газа, водитель заставляет заслонки менять свое положение, полностью раскрываются. Изменения положения, ведут к изменению напряжения в ползунке датчика.

Сведения об этом, немедленно передаются в ЭБУ, который начинает регуляцию топливной подачи форсункой.Датчик схема принципиальная двигатель

Все изменения должны протекать плавно, без рывков и значительных скачков. Наиболее наглядно можно увидеть картину происходящего на осциллограмме. Подключается осциллограф, и анализируется график.

Провалы, резкие скачки, «пилообразный» характер осциллограммы, свидетельствует о неисправности датчика. Простой вольтметр не в состоянии зафиксировать миллисекундные скачки напряжения.

Мультиметром можно замерять предельные показания напряжения.

Проверку сканером осуществляют по стандартной схеме: подключают его к разъему, в «потоке данных» найти показания напряжения в этом датчике. Снимать все показания, медленно передвигая заслонки. По плавности нарастания ( без скачков и провалов) напряжения, можно судить об исправности датчика.

  • Исправность ДПДЗ проверяется, когда:
  • – получив оповещение об ошибке
  • – сбои двигателя – затрудненный запуск, нестабильные обороты
  • – повышенное расходование топлива, усиление детонации, перебойный характер работы мотора
  • – когда требуется настройка датчиков определенных фирм – производителей

Датчик температуры двигателя

Датчик ОЖ – резисторный прибор, где изменение температуры приводит к колебаниям его электрических характеристик (сопротивления и напряжения). Он устанавливается в просвете трубки ОС и погружен в ОЖ. С остыванием жидкости, увеличивается сопротивление прибора (100Ом при t= -44°С).

ЭБУ подает стабилизационное напряжение, измеряет степень ее понижения – на прогретом двигателе его показатели низкие, холодный мотор выдает высокое напряжение. Так ЭБУ определяет текущую t ОЖ, необходимую во многих регуляционных процессах.Датчик схема принципиальная двигатель

Обрыв или отход контакта, воспринимается ЭБУ в форме понижения температуры ОЖ. Это свидетельствует об увеличении доли горючего в смеси. Это действительно так – коррекция происходит в сторону увеличения содержания бензина в смеси.

  1. Всякие механические повреждения или разомкнутая цепь, воспринимается ЭБУ в виде оповещения о повышение температуры ОЖ, что оборачивается уменьшением доли топлива в смеси, выдачей расшифровки « работа на обедненной смеси».
  2. Признаки неисправности:
  3. – индикатор не панели
  4. – соответствующая ошибка и ее код
  5. – повышение «аппетита» двигателя, токсичность выхлопов
  6. – затрудненный запуск, самопроизвольная остановка

Перед началом диагностики, нужно «привести в норму» охлаждающую систему. Она должна быть заправлена, крышку следует открывать после остывания. Датчик утоплен в жидкости, соблюдена герметичность, чтобы избыток воздуха не создавал помехи . Сама ОЖ правильно разбавлена. Проверить работу вентилятора и термостата.

Самую удобную и точную проверку можно провести сканером Bosch KTS, имеющий большой выбор адаптеров и аппарат мультиплекора. Универсальный диагностический сканер способен тестировать 145 систем и 17000 блоков. Поддерживают протоколы ISO, SAE, OBD. Имеет функции:

  • – считка кодов и вывод расшифровки
  • – сброс памяти
  • – сброс интервалов ТО
  • – текущие параметры и их графики
  • – опознание блоков
  • – базовые опции

Кислородный датчик – лямбда зонд

Протокол OBD предписывает постоянное значение коэффициент λ=1, что соответствует стехиометрической концентрации топливной смеси. Это экономит горючее и снижает токсичность выбросов.

Датчик реагирует на давление кислорода в выхлопных газах. При определенных сбоях системы двигателя, когда кислород не в полном объеме расходуется при сгорании топлива, он поступает в выпускной коллектор. Тогда посылаются сигналы в ЭБУ, которые тот расшифровывает как обедненная смесь.

Если в коллекторе нарушена герметичность, то к такому же результату приведет реакция датчика на, проникший туда, кислород.Датчик схема принципиальная двигатель

Причиной искажения сигналов может стать и «отравление» датчика, вредными веществами (свинца и кремния) коллектора. Также, механические повреждения или плохое заземление.

Тестирование можно провести, все тем же, сканером Bosch KTS.

  • Соединить прибор через разъем
  • Прогреть датчик и двигатель, поднять обороты до 3 тыс
  • Проверить замкнутость цепи
  • Снять осциллограмму
  • Проанализировать ее
Читайте также:  Двигатель ef750 расход топлива

Когда датчик исправен, график плавно колеблется в интервале  4 – 19 Гц. А напряжение  0.15 – 0.4В – нижний предел, 0.5 – 0.8В верхний предел.

Ко всему вышеизложенному, остается добавить – важность корректного функционирования датчиков  двигателя, как и всех остальных, трудно переоценить. Без этого запускается цепной процесс разладов всех систем автомобиля.

Датчик коленвала

Датчик положения коленвала – один из важнейших частей в электронной системе управления двигателем. Датчик положения коленвала сообщает блоку управления когда необходимо произвести искру и подать топливо в нужный цилиндр.

Во веря вращения коленвала и установленного на нем диска с зубьями, датчик реагирует на зубья, вращающиеся рядом с датчиком.Датчик коленчатого вала генерирует импульсы тока, которые считывает ЭБУ и решает в какой из поршней в каком цилиндре достиг верхней точки.

Неисправный датчик коленвала перестает подавать сигналы блоку управления, это приводит к тому, что информации о положении поршней не поступает и двигатель глохнет.
Датчик устроен достаточно просто. Внутри он полностью заполнен компайндом, что делает его не пригодным к ремонту.

Обычно датчик коленвала выходит из строя из-за реского скачка напряжения, происходит замыкание и нарушается сигнал импульсов, по которым ЭБУ считывает информацию. Со временем межвитковое замыкание нарастает и датчик выходит из строя.

В первом случае двигатель будет работать с перебоями, а в дальнейшем попросту заглохнет. Бывают случаи, что двигатель работает до тех пор пока вы не заглушили машину, а после мотор уже не заведется.

Причин нестабильной работы датчика коленвала можем быть несколько:

Управление двигателем постоянного тока с помощью Arduino и инфракрасного датчика

Arduino за короткое время стало самой популярной во всем мире микроконтроллерной платформой среди студентов и радиолюбителей. Многие используют Arduino для создания самых разнообразных проектов.

Датчик схема принципиальная двигатель

В этой статье мы рассмотрим простой проект на Arduino, в котором будут использоваться три такие компонента как инфракрасный датчик (сенсор), реле (Relay Module) и двигатель постоянного тока. Мы будем использовать инфракрасный датчик для управления двигателем постоянного тока при помощи Arduino.

В нашей конструкции инфракрасный датчик будет использоваться для обнаружения какого-нибудь предмета перед ним, Arduino будет считывать выход инфракрасного датчика и подавать сигнал высокого уровня на передающий модуль, который соединен с двигателем постоянного тока.

То есть двигатель постоянного тока будет включаться каждый раз, когда инфракрасный датчик будет обнаруживать какой-нибудь предмет перед собой.

Необходимые компоненты

Датчик схема принципиальная двигатель
Датчик схема принципиальная двигатель
Датчик схема принципиальная двигатель

Работа схемы

Схема устройства представлена на следующем рисунке.

Датчик схема принципиальная двигательВ представленной схеме инфракрасный датчик соединен к контакту 2 Arduino, а вход реле соединен с контактом 7 Arduino. Реле соединено с двигателем постоянного тока.

Объяснение кода программы

Код программы для нашей схемы очень простой – он приведен в конце программы вместе с видео, демонстрирующем работу схемы. В этой части программы объяснена лишь его наиболее существенная часть.

Здесь мы имеем инфракрасный датчик, подсоединенный к контакту 2 Arduino. То есть всегда, когда инфракрасный датчик обнаруживает какой-нибудь объект, на контакте 2 Arduino будет высокий уровень. На основании этого на контакт 7 Arduino будет подаваться управляющее напряжение – а к этому контакту подсоединено реле.

void setup() {
pinMode(2,INPUT);
pinMode(7,OUTPUT);
Serial.begin(9600);
}

void loop() {
if (digitalRead(2) == 1)
{
Serial.println(digitalRead(2));
digitalWrite(7,HIGH);
}

  Serial.println(digitalRead(2));

Объяснение работы схемы и исходный код программы

Когда инфракрасный датчик обнаруживает какой-нибудь объект, он формирует на своем выходе напряжение высокого уровня. Этот сигнал считывает Arduino, которое, в свою очередь, активирует реле устанавливая на контакте 7 высокое напряжение. Как только реле будет активировано оно включает двигатель постоянного тока.

Когда в поле зрения инфракрасного датчика нет никакого объекта, то на выходе инфракрасного датчика будет низкий уровень и, следовательно, двигатель постоянного тока будет находиться в выключенном состоянии.

Чувствительность инфракрасного датчика можно регулировать с помощью потенциометра, установленного на нем.

Чувствительность инфракрасного датчика в данном случае будет обозначать расстояние, на котором он будет обнаруживать объект.

void setup() {
pinMode(2,INPUT);
pinMode(7,OUTPUT);
Serial.begin(9600);
}
void loop() {
if (digitalRead(2) == 1)
{
Serial.println(digitalRead(2));
digitalWrite(7,HIGH);
}
else{
digitalWrite(7,LOW);
}
}

  Serial.println(digitalRead(2));

Видео, демонстрирующее работу схемы

Устройство и ремонт электронных узлов системы зажигания инжекторных двигателей

Датчик кислорода

Датчик кислорода (ДК) установлен в нижней части приемной трубы, он работает совместно с нейтрализатором.

Чувствительный элемент датчика находится непосредственно в потоке отработанных газов. ДК формирует напряжение от 50 до 855 мВ в зависимости от содержания кислорода в отработанных газах.

Рис. 7. Внешний вид датчика кислорода

Внешний вид датчика кислорода показан на рис. 7, а на рис. 8 показан фрагмент схемы подключения ДК к контроллеру. В состав датчика входят измеряющий чувствительный элемент и нагреватель.

Нагреватель служит для быстрого прогрева чувствительного элемента после запуска двигателя. Температура нагрева, при котором эффективность работы ДК повышается, составляет около 300°С.

При нагреве датчика он вырабатывает напряжение в пределах от 300 до 600 мВ и выше.

Во время изменения напряжения контроллер реагирует на то, что датчик прогрелся и готов к работе.

Сигнал с чувствительного элемента датчика поступает на соединитель ХР1 контроллера и далее через резистивный делитель R15 R17 R18 на выв. 58 DD4. Одновременно на чувствительный элемент датчика в холодном состоянии подается опорное напряжение около 450 мВ.

Рис. 8. Схема подключения ДК к контроллеру

На контакт В нагревателя датчика подается напряжение 12,5 В с контактов главного реле (см. рис. 8). На контакт D подогревателя датчика кислорода подключается «земля» через ключ (полевой транзистор DA9 типа BTS 141), который управляется сигналом с выв. 38 микроконтроллера DD4.

  • Работа инжекторного двигателя обеспечивается в двух режимах:
  • «Открытый контур» — работа двигателя в холодном состоянии или на холостом ходу (выходное напряжение ДК находится в пределах от 300 до 580 мВ), контроллер производит расчет длительности импульсов впрыска без учета данных ДК.
  • «Закрытый контур» — двигатель и ДК прогреты до рабочей температуры, контроллер анализирует данные с ДК для поддержания соотношения «воздух/топливо» 14,7/1 (выходное напряжение ДК 

находится в пределах от 50…180 мВ до 680…850 мВ). При этом низкий уровень напряжения характеризует наличие кислорода в отработанных газах(бедная смесь), а высокий уровень говорит об отсутствии или низком содержании кислорода (богатая смесь).

  1. В автомобилях с двигателем, изготовленным под нормы токсичности Евро-3, используется два датчика кислорода — управляющий и диагностический.
  2. Нестабильность в работе датчика кислорода (или полное отсутствие сигнала на его выходе) может быть связано как с неисправностью самого ДК, так и с внешними факторами.
  3. Причины отказов ДК могут быть вызваны некачественным топливом, попаданием в камеру сгорания паров охлаждающей жидкости, моторного масла, перегревом или проблемами с электрооборудованием автомобиля.
  4. Проверить датчик кислорода можно с помощью осциллографа или обычного мультиметра.

Во время проверки работы датчика, следует отсоединить колодку от ДК, включить зажигание и измерить напряжение на контакте «А» колодки, оно должно быть равно 450 мВ. Если напряжение в норме, следует заменить ДК (неисправен чувствительный элемент). При отсутствии напряжения на указанном контакте проверяют цепь между конт.

«А» и конт 28 соединителя ХР1 (зажигание выключено, соединитель ХР1 отключен от контроллера). При отсутствии неисправности в данной цепи проверяют контроллер или заменяют его (данные неисправности соответствуют кодам Р0130 — неверный сигнал при работе ДК, Р0131 — низкий уровень сигнала ДК, Р0132 — высокий уровень сигнала ДК).

Рис. 9. Внешний вид измерительного элемента BOSCH ДМРВ

  • Поиск неисправности в цепи управления подогревателя датчика кислорода (код Р0135) начинают с проверки самого ДК. Отключают колодку ДК, проверяют отсутствие обрыва подогревателя, подключив омметр между контактами «В» и «D», сопротивление при этом 
  • должно быть в пределах от 15 до 20 Ом (в зависимости от модели ДК).
  • Проверяют присутствие напряжения на контакте «D» колодки ДК.
Читайте также:  В чем причина перепадов оборота двигателя

Неисправность ДК может быть вызвана также замыканием на «массу» в цепи между контактами «D» колодки ДК и контактами 15 и 33 соединителя ХР1 контроллера. Как правило, данная неисправность может быть вызвана замыканием подогревателя ДК на «массу».

  1. Последствия данной неисправности могут быть разнообразные: выход из строя ДК и его цепей, а также ЭБУ (выход из строя транзистора DA9, резистора R81, микросхемы DD7-5, микроконтроллера DD4).
  2. Датчик массового расхода воздуха
  3. Датчик расхода воздуха (ДМРВ) служит для измерения количества расходуемого двигателем воздуха.

Он устанавливается на автомобиле в разрыв между воздушным фильтрующим элементом и дроссельным патрубком. Показания ДМРВ являются одним из главных параметров, используемых контроллером для управления работой системы зажигания двигателя.

Датчик выполнен в виде патрубка из пластмассы со съемным измерительным элементом. Внешний вид измерительного элемента фирмы BOSCH показан на рис. 9, а на рис. 10 схема подключения ДМРВ к контроллеру с примером осциллограммы в момент резкого открытия дроссельной заслонки.

Рис. 10. Схема подключения ДМРВ к контроллеру

ДМРВ формирует постоянное напряжение в диапазоне от 1 до 5 В,значение которого зависит от объема проходящего через него воздуха.

За время выпуска автомобилей семейства ВАЗ завод комплектовал автомобили ДМРВ фирм GM (диаметр отверстия 86 мм), BOSCH (диаметр отверстия 74 мм) и Siemens. Датчики указанных фирм не взаимозаменяемые.

Неисправности ДМРВ, как правило, приводят к сбоям в работе двигателя — затрудненному пуску, провалам, рывкам и т.п. Отметим, что неверное вычисление контроллером количества воздуха, расходуемого при работе двигателя, приводит к отказам других элементов системы зажигания двигателя.

Следует учесть, что ДМРВ относится к неремонтируемым и необслуживаемым изделиям. При выходе из строя он требует замены (коды ошибок ДМРВ: Р0102 — низкий уровень сигнала, Р0103 — высокий уровень сигнала).

Причиной одного из распространенных отказов ДМРВ может быть попадание на чувствительный элемент датчика масла из системы вентиляции картера двигателя.

Исполнительные элементы системы зажигания

На рис. 11 приведен фрагмент схемы подключения к контроллеру исполнительных элементов системы зажигания инжекторного двигателя. Перечислим основные элементы: модуль зажигания, система топливоподачи (электробензонасос, форсунки, реле электробензонасоса), контрольная лампа «CHECK ENGINE» и датчик положения коленчатого вала.

Рис. 11. Схема подключения к контроллеру исполнительных элементов системы зажигания двигателя

Исполнительные элементы системы зажигания управляются микроконтроллером DD4.

Работу модуля зажигания по двум каналам (1/4 и 2/3 цилиндры) обеспечивает микросхема DA3 типа TPS 2814D. Сформированные импульсы с выв. 7 (1/4 цилиндры) и выв. 5 (2/3 цилиндры) микросхемы через контакты 1 и 20 соединителя ХР1 поступают на схему формирования высокого напряжения модуля зажигания.

В состав схемы обеспечения подачи топлива входят электробензонасос (ЭБН), реле электробензонасоса и форсунки.

Электробензонасос — турбинного типа, в его состав также входит датчик уровня топлива. ЭБН установлен в топливном баке и управляется микросхемой DA6 типа HIP 0045 (выв. 15) через буферное реле. Микросхема также управляет главным реле и реле вентилятора охлаждения.

При включении зажигания контроллер включает ЭБН на несколько секунд, при этом создается необходимое давление топлива в рампе форсунок (до 650 кПа).

Форсунки установлены одной частью своей конструкции в рампу, а другой — в отверстия впускной трубы. Конструкция форсунки и системы зажигания представляет собой обычный электромагнитный клапан, который управляется контроллером.

Последовательность работы форсунок определяется ЭБУ. В табл. 1 приведена последовательность работы форсунок, в зависимости от типа контроллера.

Таблица 1

Тип контроллера Порядок работы форсунок
BOSCH M1.5.4.N Январь 5.1 VS 5.1 Попеременный синхронный впрыск, включение попарное (1/4 и 2/3 цилиндры)
BOSCH M1.5.4 Январь 5.1VS 5.1 (2111-1411020-72) Одновременный впрыск, включение через каждые 360° поворота коленчатого вала
BOSCH M1.5.4.N (2112-1411020-40) Январь 5.1 (2112-1411020-41) Январь 1.5.4 Январь 5.1.2 BOSCH MP7.OH Последовательный впрыск, с включением через каждые 180° поворота коленчатого вала (1-3-4-2)
  • Неисправности исполнительных элементов системы зажигания условно можно разделить на отказы механической части системы топ-ливоподачи и отказы, связанные с электронной частью.
  • Остановимся более подробно на отказах электронной части.
  • Типовым отказом является отсутствие запуска двигателя при прокручивании коленчатого вала.
  • После проверки работы системы топливоподачи проверяют целостность всех предохранителей,качество соединения жгута системы зажигания с исполнительными элементами, механизмами и датчиками.
  • Отсоединяют колодку жгута проводов форсунок и проверяют на клеммах «B, F, C, G» относительно клеммы «F» сопротивление обмоток электромагнитного клапана форсунок, которое должно быть в пределах от 10 до 15 Ом.

Поочередно проверяют пробником на каждой из форсунок наличие управляющего сигнала с контроллера. Проверяют работоспособность модуля зажигания методом проверки/замены высоковольтных проводов и свечей зажигания.

Омметром проверяют на обрыв и замыкание цепь между контактами 1, 20 соединителя ХР1 ЭБУ и контактами «В», «А» колодки модуля зажигания соответственно. При исправных цепях следует заменить ЭБУ.

Также следует проверить работу датчика коленчатого вала (сопротивление датчика должно быть от 550 до 750 Ом), расстояние от вершины зубцов на шкиве коленчатого вала до рабочей части датчика должно составлять 1±0,4 мм.

Ремонт и программирование контроллера

Для диагностики неисправностей электронной части системы зажигания современных автомобилей. Специалисты, как правило, используют специализированные электронные приборы — сканеры, диагностические тестеры и т.д.

Их подключают к диагностическим колодкам автомобиля, обеспечивая тем самым оперативное обнаружение неисправностей по кодам ошибок и определение дефектного узла.

После устранения неисправности с помощью этих же приборов необходимо стереть из памяти контроллера коды ошибок.

В электронной части системы зажигания автомобиля ЭБУ считается самым надежным узлом. Как правило, он выходит из строя из-за внешних факторов — нарушения герметичности и попадания влаги внутрь конструкции, отказа исполнительных устройств и датчиков, замыкания и изменение полярности питания.

Выявление неисправностей и ремонт ЭБУ следует проводить в стационарных условиях.

Большинство контроллеров, которые устанавливаются на отечественные автомобили, имеют одинаковую элементную базу, отличаются лишь типы микроконтроллеров и Flash-памяти.

В табл. 2 приведены данные по указанным элементам для наиболее распространенных типов ЭБУ.

Таблица 2

Типконтроллера Микрокон­троллер Память
VS 5.1 МИКАС 7.1 С509 24С04(ЭСППЗУ)
BOSCHMP7.0H В58590 29F200(Flash-память)
BOSCH M 7.9.7 В59759 29F400(Flash-память)

Программирование контроллера Январь 5.1 может выполняться как на автомобиле, так и в автономном режиме.

  1. Для проведения работ по программированию следует иметь в распоряжении ПК (желательно, ноутбук), оснащенный специальным программным обеспечением, эталонные прошивки микросхемы Flash-памяти контроллера, адап
  2. тер (переходное согласующее устройство между контроллером и ПК) и технологические приспособления, которые позволяют произвести данные работы.
  3. К технологическим приспособлениям относятся всевозможные соединители, которые в своем составе, как правило, имеют разъем контроллера, индикаторы и управление по переводу контроллера в режим программирования.

На рис. 12 показана принципиальная схема одного из таких технологических приспособлений.

Рис. 12. Схема адаптера для программирования контроллера с ПК

  • Данная схема позволяет произвести автономное программирование контроллера(без автомобиля).
  • Выключатели S1 и S2 переключают контроллер в режим программирования, светодиод VD1 индицирует включение режима программирования.
  • Для программирования контроллера потребуется произвести следующие работы:
  • — разобрать соединитель ЭБУ;
  • — припаять к выв. 47 провод и подключить его через выключатель к +12 В;
  • — собрать соединитель ЭБУ;
  • — при отсутствии в составе системы зажигания автомобиля блока управления АПС соединить контакты 9 и 18 на колодке ЭБУ;
  • — подключить через адаптер ПК к диагностической колодке автомобиля и начать программирование, результат перевода контроллера в режим программирования будет свидетельствовать об отсутствии работы ЭБН.
  •  Николай Пчелинцев (г. Тамбов)
  • Источник: Ремонт и сервис
Ссылка на основную публикацию
Adblock
detector