Usb контроллер шагового двигателя схема

Шаговый двигатель это бесколлекторный двигатель, ротор которого вращается не плавно, а шагами (дискретно). Один оборот ротора (360°) состоит из определённого количества шагов. Количество полных шагов в одном обороте указывается в технической документации двигателя.

Например, ротор шагового двигателя 17HS1352-P4130, за один полный шаг, поворачивается на 1,8°. Значит для поворота ротора на 360° двигатель должен совершить 200 полных шагов.

Для совершения одного полного шага на обмотки двигателя поступает серия сигналов от драйвера (как в полношаговом «1», так и в микрошаговых режимах «2», «4», «8», «16»).

Usb контроллер шагового двигателя схема

С принципом работы шаговых двигателей можно ознакомиться в разделе Wiki — ШД.

Микрошаг:

Большинство драйверов позволяют разделить полный шаг двигателя на несколько микрошагов. Выбор микрошага устанавливается согласно таблице в инструкции к драйверу. В таблице указывается количество микрошагов на полный шаг «Microstep» (1/2/4/8/16/32/…) и/или количество тактов на полный оборот вала «Pulse/rev» (200/400/800/1600/3200/6400/…).

Если для целого поворота ротора двигателя в режиме 1 микрошаг на полный шаг требуется 200 тактов, то в режиме 4 микрошага на полный шаг, потребуется уже 800 тактов.

Чем больше микрошагов в полном шаге, тем точнее и плавнее поворачивается ротор шагового двигателя, но для поддержания той же скорости, требуется увеличивать частоту следования тактовых импульсов.

Ограничение тока фазы:

Большинство драйверов позволяют ограничить ток фазы (ток протекающий через обмотки двигателя). Выбор тока фазы осуществляется согласно таблице в инструкции к драйверу. В таблице указывается действующий ток «Current» и/или пиковый ток «PK Current». Чем выше ток, тем выше отдаваемый момент (сила двигателя).

Слишком большой ток приведёт к перегреву двигателя и может вызвать его поломку, а слишком маленький может привести к пропуску шагов, или нестабильному вращению ротора.

У некоторых драйверов ограничение тока осуществляется поворотом потенциометра.

Ток удержания:

Ток удержания это постоянный ток проходящий через обмотки двигателя, удерживающий вал в неподвижном состоянии. Некоторые драйверы позволяют снизить ток удержания.

Снижение тока удержания приводит к снижению нагрева двигателя при его удержании.

Силовые выводы драйвера:

Силовые выводы используются для подачи напряжения питания шагового двигателя и подключения его обмоток.

  • Входы «VCC», «GND» / «+V», «GND» / «AC+», «AC-» — предназначены для получения напряжения питания шагового двигателя.
  • Выводы «A+» и «A-» — предназначены для подключения первой обмотки шагового двигателя.
  • Выводы «B+» и «B-» — предназначены для подключения второй обмотки шагового двигателя.

Подключение обмоток двигателя к драйверу зависит от количества выводов у двигателя.

Usb контроллер шагового двигателя схема

Драйверы DM860H, DM556, TB6600 позволяют работать только с биполярными двигателями. Двигатели с 4 выводами подключаются по схеме А. Двигатели с 6 выводами подключаются по схеме Б или В. Двигатели с 8 выводами подключаются по схеме Г или Д.

Запрещается подключать или отключать обмотки двигателя на включенном драйвере!

Сигналы управления STEP/DIR (PUL/DIR):

  • Вход драйвера «STEP» (он же «PULSE») — предназначен для получения тактовых импульсов. За один импульс ротор двигателя поворачивается на один микрошаг. Вход может работать по фронту или спаду импульса. Чем выше частота импульсов, тем выше скорость вращения ротора.
  • Вход драйвера «DIR» — предназначен для выбора направления вращения двигателя («0» — в одну сторону, «1» — в другую сторону). Смена состояния вывода «DIR» должна осуществляться при отсутствии импульсов на выводе «STEP».
  • Вход драйвера «ENABLE» — разрешает работу двигателя. У большинства драйверов данный вход является инверсным, работа двигателя разрешена при отсутствии напряжения на входе. Некоторые драйверы позволяют вообще не подключать этот вход. Если работа двигателя запрещена, то его обмотки электрически отключаются и вал двигателя не удерживается.

Usb контроллер шагового двигателя схема

  • Двигатель отключён если на входе «ENABLE» есть напряжение.Сигналы на входах «STEP» и «DIR» игнорируются драйвером. Вал двигателя освобождён.
  • Вал поворачивается на один микрошаг с каждым импульсом на входе «STEP», при условии что на входе «ENABLE» нет напряжения.Направление поворота вала зависит от состояния на входе «DIR».
  • Вал двигателя удерживается в неподвижном состоянии если на входе «ENABLE» нет напряжения и на вход «STEP» не подаются импульсы.
  • t1: После снятия напряжения со входа «ENABLE» должно пройти не менее 5мкс до изменения уровня на входе «STEP» или «DIR».
  • t2: После изменения состояния на входе «DIR» должно пройти не менее 5мкс до подачи импульса на вход «STEP».
  • t3, t4: Длительность импульса или паузы на входе «STEP» не должна быть меньше 2,5мкс.
  • t5: Автоматическое снижение тока удержания происходит через 1-2 сек после подачи последнего импульса на вход «STEP». Время зависит от типа драйвера.

Сигналы управления CW/CCW:

(Данные сигналы не поддерживаются драйверами DM860H, DM556, TB6600)

  • Вход драйвера «CW» — предназначен для получения тактовых импульсов. За один импульс ротор двигателя поворачивается на один микрошаг. Вход может работать по фронту или спаду импульса. Чем выше частота импульсов, тем выше скорость вращения ротора.
  • Вход драйвера «CCW» — выполняет те же действия что и вход «CW», но ротор двигателя поворачивается в другую сторону.
  • Вход драйвера «ENABLE» — разрешает работу двигателя. У большинства драйверов данный вход является инверсным, работа двигателя разрешена при отсутствии напряжения на входе. Некоторые драйверы позволяют вообще не подключать этот вход. Если работа двигателя запрещена, то его обмотки электрически отключаются и вал двигателя не удерживается.

Usb контроллер шагового двигателя схема

  • Двигатель отключён если на входе «ENABLE» есть напряжение.Сигналы на входах «CW» и «CCW» игнорируются драйвером. Вал двигателя освобождён.
  • Вал поворачивается на один микрошаг с каждым импульсом на входе «CW» или «CCW», при условии что на входе «ENABLE» нет напряжения.Направление поворота вала зависит от того, на какой вход поступают импульсы.
  • Вал двигателя удерживается в неподвижном состоянии если на входе «ENABLE» нет напряжения и на входы «CW» и «CCW» не подаются импульсы.
  • t1: После снятия напряжения со входа «ENABLE» должно пройти не менее 5мкс до подачи импульса на вход «CW» или «CCW».
  • t2: После последнего импульса на одном входе должно пройти не менее 5мкс до подачи импульса на дрогой вход.
  • t3, t4: Длительность импульса или паузы не должна быть меньше 2,5мкс.
  • t5: Автоматическое снижение тока удержания происходит через 1-2 сек после подачи последнего импульса. Время зависит от типа драйвера.

Подключение управляющих выводов драйвера:

Для подключения управляющих выводов можно использовать одну их следующих схем:

Usb контроллер шагового двигателя схема

Допускается подключать драйвер к контроллеру без использования сигнала ENABLE, тогда выводы ENA+ и ENA- остаются свободными (не подключёнными).

  • При уровне логической «1» = 5В, все сопротивления R исключаются из схемы.
  • При уровне логической «1» = 12В, все сопротивления R равны 1кОм.
  • При уровне логической «1» = 24В, все сопротивления R равны 2кОм.

Подключение драйвера к Arduino:

Так как логические уровни Arduino UNO равны 5В, то при подключении управляющих выводов к драйверу, ограничивающие сопротивления R не нужны.

Для подключения драйвера к Arduino воспользуемся схемой где выводы PUL-, DIR-, ENA- подключены к GND контроллера (правая схема на картинке выше).

Если подключить драйвер к Arduino без использования сигнала ENABLE, оставив выводы ENA+ и ENA- не подключёнными, то приведённый ниже скетч не сможет освобождать вал. Вал двигателя будет удерживаться всё время, пока он не вращается.

Usb контроллер шагового двигателя схема

Выводы драйвера ENA+, DIR+ и PUL+ можно подключить к любым выводам Arduino, их номера указываются в начале скетча. В примере это выводы 2, 3 и 4 соответственно.

Если для подключения драйвера воспользоваться схемой где выводы PUL+, DIR+, ENA+ подключены к 5V контроллера (левая схема на картинке выше), то в скетче нужно изменить логические уровни устанавливаемые функциями digitalWrite().

Управление двигателем при помощи Arduino:

Для работы скетча установите микрошаг 1/4, что соответствует 800 тактов на 1 оборот. Микрошаг устанавливается DIP-переключателями драйвера согласно таблице на его корпусе.

Скетч постоянно повторяет 4 действия:

  • Поворот вала на 2 полных оборота в одну сторону.
  • Остановка двигателя на 5 секунд с удержанием вала.
  • Поворот вала на 2 полных оборота в другую сторону.
  • Остановка двигателя на 5 секунд с освобождением вала.

const uint8_t pin_ENA = 2; // Вывод Arduino подключённый к входу драйвера ENA+.
const uint8_t pin_DIR = 3; // Вывод Arduino подключённый к входу драйвера DIR+.
const uint8_t pin_PUL = 4; // Вывод Arduino подключённый к входу драйвера PUL+.
// Вывод GND Arduino соединён с входами драйвера ENA-, DIR-, PUL-.
uint32_t f = 1000; // Определяем частоту следования микрошагов от 1 до 200'000 Гц.
// Чем выше частота, тем выше скорость вращения вала.
void setup(){ //
pinMode( pin_ENA, OUTPUT ); // Конфигурируем вывод Arduino как выход.
pinMode( pin_DIR, OUTPUT ); // Конфигурируем вывод Arduino как выход.
pinMode( pin_PUL, OUTPUT ); // Конфигурируем вывод Arduino как выход.
} //
//
uint32_t t = 1000000/f/2; // Определяем длительность импульсов t3 и пауз t4 в мкс.
//
void loop(){ //
// Готовимся к движению вала: //
digitalWrite( pin_ENA, 0 ); // Разрешаем работу двигателя.
delayMicroseconds(5); // Выполняем задержку t1 (см. график STEP/DIR).
digitalWrite( pin_DIR, 0 ); // Выбираем направление вращения.
delayMicroseconds(5); // Выполняем задержку t2 (см. график STEP/DIR).
// Поворачиваем вал на 2 оборота: //
for(int i=0; i(F_CPU/255/ 1)){i= 1; j=1;}else
if(f>(F_CPU/255/ 8)){i= 8; j=2;}else
if(f>(F_CPU/255/ 32)){i= 32; j=3;}else
if(f>(F_CPU/255/ 64)){i= 64; j=4;}else
if(f>(F_CPU/255/128)){i= 128; j=5;}else
if(f>(F_CPU/255/256)){i= 256; j=6;}else
{i=1024; j=7;}
// Устанавливаем регистры 2 таймера:
TCCR2A = 0

Читайте также:  Датчик температуры двигателя 1g fe beams

Изучаем миниатюрный шаговый двигатель

Шаговые двигатели нашли широкое применение в современной промышленности и самоделках. Их используют там, где необходимо обеспечить точность позиционирования механических узлов, не прибегая к помощи обратной связи и точным измерениям.

Сегодня хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Мы подробно рассмотрим их устройство и способы управления такими крошечными моторчиками. Usb контроллер шагового двигателя схема Шаговый двигатель — бесколлекторный (бесщёточный) электрический двигатель с несколькими обмотками (фазами), расположенными на статоре и магнитами (часто постоянными) на роторе. Подавая напряжения на обмотки статора, мы можем фиксировать положение ротора, а подавая напряжение на обмотки последовательно можно получить перемещение ротора из одного положения в другое (шаг), причём этот шаг имеет фиксированную угловую величину.

Мы не будем останавливаться на рассмотрении каждого типа шагового двигателя. Об этом в сети написано довольно много и хорошо, например здесь.

Хочу поговорить об особой разновидности шаговых моторов — миниатюрные шаговые двигатели, которые применяются в конструкциях оптических систем. Такие малыши имеются в свободной продаже. Но в сети, особенно в русскоязычной, очень мало информации по таким моторчикам. Потому, когда мне потребовалось использовать их в своём проекте, пришлось изрядно поискать информации и провести пару экспериментов. Результатами своих поисков и экспериментами я поделюсь в этой статье. Мы рассмотрим вопросы управления такими маленькими моторчиками, а именно:

  • драйвер L293D + микроконтроллер ATtiny44;
  • драйвер TMC2208 + микроконтроллер ATtiny44;
  • микроконтроллер ATtiny44 (без драйвера).

Собственно вопросы тут может вызвать только последний пункт. Поверьте, я тоже был удивлён, когда наткнулся на ролик (вот он), где парень просто берёт и напрямую цепляет шаговый мотор к пинам микроконтроллера! Но давайте обо всём по порядку.

Знакомство

Сначала немного посмотрим на внешний вид нашего героя: Usb контроллер шагового двигателя схема Он действительно очень маленький! Согласно умной книжке Петренко С.Ф. «Пьезоэлектрические двигатели в приборостроении», меньших размеров электромагнитные моторчики создать в принципе невозможно… то есть возможно, но с уменьшением диаметра проволоки, из которой изготавливают обмотки, всё больше энергии рассеивается в виде тепла в окружающую среду, что приводит к уменьшению КПД моторчика и делает их использование нерациональным. Из примечательного, можно отметить, что его вал очень короткий и имеет специальную проточку для установки шестерни или рычага.

Отчётливо видны две обмотки, которые даже покрыты изоляцией разного цвета. Значит, наш моторчик относится, скорее всего, к классу биполярных шаговых двигателей.

Посмотрим как он устроен: Usb контроллер шагового двигателя схема

Считаю, наше знакомство с этими моторчиками будет не полным, если мы не посмотрим, что же у него внутри. Ведь всегда интересно заглянуть внутрь механизма! Разве нет?

Собственно, ничего необычного мы не увидели. Ротор намагничен. Подшипников нигде не наблюдается, всё на втулках. Задняя втулка запрессована в корпус двигателя. Передняя ничем не закреплена. Интересно, что корпус двигателя собирался точечной сваркой. Так что переднюю крышку корпуса пришлось спиливать. Теперь перейдём к вопросу подключения и его электрическим характеристикам.

Убедимся, что он биполярный, прозвонив обмотки. Действительно биполярный, всё как на картинке выше. Сопротивление обмоток около 26Ом, хотя продавец указал 14Ом.

В описании сказано, что напряжение питания 5В. Хотя мы то с вами знаем, что для шагового двигателя важен ток, который будут потреблять его обмотки. Пробуем подключить.

Эксперимент №1. L293D + ATtiny44

Как мы знаем, для управления биполярным шаговым двигателем необходимо не просто прикладывать напряжения к двум обмоткам в нужной последовательности, но и изменять направление тока в этих обмотках, причём делать это независимо друг от друга.

Для этого на каждую обмотку нужен собственный Н-мост. Чтобы не городить его из транзисторов, был взят готовый в лице микросхемы L293D. Ещё одно её преимущество — у микросхемы имеются специальные выводы Enable1 и Enable2, который включают и выключают каждый мост.

Их можно использовать чтобы подавать ШИМ сигнал, тем самым, возможно контролировать напряжения питания каждого моста. Зачем это может понадобиться, мы увидим дальше.

Кроме того, L293D может коммутировать напряжения до 36В и выдавать до 1,2А на каждый канал, чего вполне должно хватить для питания обмоток нашего моторчика.

Итак, схема: Usb контроллер шагового двигателя схема Управляющие входы L293D подключены к выходам OC0A и OC0B, что позволит в будущем подавать на них ШИМ сигнал. Прошивать контроллер будем через внутрисхемный программатор (на схеме не указан). Вот как выглядит собранная схема на макетной плате: Usb контроллер шагового двигателя схема И вот так расположен наш подопытный: Usb контроллер шагового двигателя схема Теперь можно приступать к экспериментам. Рассчитаем ток, который будет течь через обмотки двигателя при подключении их к напряжению 5В: I=U/R = 5В/26Ом = 190мА Совсем небольшой. Интересно как долго он сможет держать такой ток и не перегреться. Включим в цепь одной из обмоток амперметр и вольтметр, и проведём замеры соответствующих величин при подачи питания на эту обмотку через драйвер.

При падении напряжения на обмотке 2.56В амперметр показывает ток 150мА, причём хорошо заметно, как начинает падать величина силы тока в процессе нагревания обмоток. Надо отметить, что не так уж и сильно он греется.

Убедившись, что напряжение 5В для моторчика опасности не представляет, попробуем покрутить им в разные стороны. И вот теперь пару слов мы скажем про режимы работы шагового двигателя.

Об этом довольно хорошо сказано здесь.

Не будем повторяться, но вспомним, что шаговый двигатель может работать в трёх режимах:

  • Полношаговый однофазный это когда одновременно напряжение подаётся только на одну фазу двигателя, ротор делает шаг, затем текущая фаза выключается и включается следующая.
  • Полношаговый двухфазный это когда напряжение подаётся одновременно на две фазы мотора, при этом, ротор притягивается одновременно к двум обмоткам, что создаёт больший крутящий момент.
  • Микрошаговый режим в этом случае реализуется тот же принцип, что и на полношаговом двухфазном, то есть работают одновременно две обмотки, но напряжение (и как следствие ток) распределяется между ними неравномерно. Фактически, это означает, что мы можем поставить моторчик в неограниченное количество положений (на практике, разумеется, такого сделать нельзя). Увеличивается точность позиционирования.

Попробуем реализовать первые два режима на микросхеме L293D а для микрошагового режима оставим специальный драйвер из второго эксперимента. Исходный код программы выглядит следующим образом: Исходный код в среде WinAVR #define F_CPU 8000000UL // указываем частоту в герцах

// фьюзы необходимо выставить L: E2; H:DF; Ex:FF;
// это будет частота 8МГц от внутреннего генератора с выключенным предделителем тактовый частоты (включен по умолчанию и равен 8)

#include // подключаем библиотеку АВР

#include // подключаем библиотеку задержек

#include // подключаем библиотеку прерываний

// управление штатным светодиодом

#define LED_pin PA5

#define LED_ON PORTA |=(1

Управление шаговым двигателем через USB

Это пример, демонстрирующий управление какими-либо устройствами через USB. Программа для PC написана на Delphi.

Usb контроллер шагового двигателя схема

Особенности схемы

Usb контроллер шагового двигателя схема

  • Микроконтроллер PIC18F4550 с полноскоростным интерфейсом USB, работающим на частоте 48 МГц
  • Совместимость с USB 2.0
  • USB драйвер на кристалле
  • Управление одним шаговым двигателем
  • ПО микроконтроллера разработано под MPLAB C18
  • Хост ПО для ПК написано на Delphi 6

Описание схемы

Иллюстрирующая пример принципиальная схема изображена на Рис. 1. Основная часть схемы – микроконтроллер PIC18F4550, ведущий обмен с ПК и управляющий шаговым двигателем. Питание +5 В для схемы берется с линии Vbus интерфейса USB.

Исключение составляет шаговый двигатель, для питания которого нужен отдельный источник напряжения +Vmotor. Шина Vbus не может отдать в нагрузку ток, превышающий 250 мА.

В связи с этим, если вы добавите в схему дополнительные элементы, и суммарный ток потребления превысит 250 мА, подключите к шине +5 В внешний источник, а Vbus не забудьте отсоединить.

Не соединяйте +Vmotor и Vbus.

В показанном примере шаговый двигатель управляется однофазным методом (A-C-B-D). При необходимости использовать другую схему управления, сделайте соответствующие изменения самостоятельно.

  • Usb контроллер шагового двигателя схема
    Рисунок 1. Пример схемы
  • Надписи на схеме
    Stepping Motor Шаговый двигатель
    USB connector Разъем USB
    Common[d] Общий
  • Прошивка микроконтроллера
Читайте также:  Все о ауди 90 двигатель не заводиться

ПО микроконтроллера разработано под MPLAB C18 с использованием USB драйвера фирмы Microchip. Если захотите добавить новые команды, или что-то изменить, посмотрите файлы user.c и use.h в папке user.

Программы для ПК

Программа для описываемого примера программа была написана  на C++ программистами Microchip, и переписана автором на Delphi 6. По сравнению с оригиналом, изменены три команды:

  • turn left (вращение влево),
  • turn right (вращение вправо),
  • Stop motor (остановить мотор).

Чтобы разобраться в деталях, смотрите PICDEM™ FS USB User’s Guide и соответствующие файлы.

Usb контроллер шагового двигателя схема

Интерфейс ПК с устройством реализован с использованием драйвера Microchip General Purpose USB Windows driver, написанного на C/C++. Если вы захотите написать собственный драйвер, взгляните на страничку www.jungo.

com. Вы найдете на ней много интересной информации о написании драйверов USB. Но учтите, что написать драйвер USB – задача непростая. Как минимум, вы должны хорошо представлять себе работу операционной системы.

Исходные коды

sixca.com

Управление шаговым двигателем

Usb контроллер шагового двигателя схема
Первая модификация силового блока. L293 вытащена.
Usb контроллер шагового двигателя схема
Вид снизу

Рано или поздно, при постройке робота, возникнет нужда в точных перемещениях, например, когда захочется сделать манипулятор. Вариантов тут два — сервопривод, с обратными связями по току, напряжению и координате, либо шаговый привод. Сервопривод экономичней, мощней, но при этом имеет весьма нетривиальную систему управления и под силу далеко не всем, а вот шаговый двигатель это уже ближе к реальности.

Шаговый двигатель это, как понятно из его названия, двигатель который вращается дискретными перемещениями. Достигается это за счет хитрой формы ротора и двух (реже четырех) обмоток. В результате чего, путем чередования направления напряжения в обмотках можно добиться того, что ротор будет по очереди занимать фиксированные значения.
В среднем, у шагового двигателя на один оборот вала, приходится около ста шагов. Но это сильно зависит от модели двигателя, а также от его конструкции. Кроме того, существуют полушаговый и микрошаговый режим, когда на обмотки двигателя подают ШИМованное напряжение, заставляющее ротор встать между шагами в равновесном состоянии, которое поддерживается разным уровнем напряжения на обмотках. Эти ухищрения резко улучшают точность, скорость и бесшумность работы, но снижается момент и сильно увеличивается сложность управляющей программы — надо ведь расчитывать напряжения для каждого шага.

Один из недостатков шаговиков, по крайней мере для меня, это довольно большой ток.

Так как на обмотки напруга подается все время, а такого явления как противоЭДС в нем, в отличии от коллекторных двигателей, не наблюдается, то, по сути дела, мы нагружаемся на активное сопротивление обмоток, а оно невелико.

Так что будь готов к тому, что придется городить мощный драйвер на MOSFET транзисторах или затариваться спец микросхемами.

Типы шаговых двигателей
Если не углубляться во внутреннюю конструкцию, число шагов и прочие тонкости, то с пользовательской точки зрения существует три типа:

  • Биполярный — имеет четыре выхода, содержит в себе две обмотки.
  • Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины.
  • Четырехобмоточный — имеет четыре независимые обмотки. По сути дела представляет собой тот же униполярник, только обмотки его разделены. Вживую не встречал, только в книжках.

Униполярный отличается от биполярного только тем, что ему нужна куда более простая схема управления, а еще у него значительно слабее момент. Так как работает он только половинами обмоток. НО! Если оторвать нафиг средний вывод униполярника, то мы получим обычный биполярный. Определить какой из выводов средний не сложно, достаточно прозвонить сопротивление тестером. От среднего до крайних сопротивление будет равно ровно половине сопротивления между крайних выводов. Так что если тебе достался униполярник, а схема подключения для биполярного, то не парься и отрывай средний провод.

Где взять шаговый двигатель.
Вообще шаговики встречаются много где. Самое хлебное место — пятидюймовые дисководы и старые матричные принтеры. Еще ими можно поживиться в древних винчестерах на 40Мб, если, конечно, рука поднимется покалечить такой антиквариат.

А вот в трехдюймовых флопарях нас ждет облом — дело в том, что там шаговик весьма ущербной конструкции — у него только один задний подшипник, а передним концом вал упирается в подшипник закрепленный на раме дисковода. Так что юзать его можно только в родном креплении. Либо городить высокоточную крепежную конструкцию.

Впрочем, тебе может повезет и ты найдешь нетипичный флопарь с полноценным движком.

Схема управления шаговым двигателем
Я разжился контроллерами шаговиков L297 и мощным сдвоенным мостом L298N.

Лирическое отступление, при желании можно его пропустить

Именно на нем был сделан мой первый силовой блок робота. Кроме него там еще два источника питания на 5 и на 3.3 вольта, а также контроллер двух движков на L293 (такой же как и во второй реализации силового блока). В качестве контроллера тогда был выбран АТ89С2051.

Это антикварный контроллер архитектуры MSC-51 в котором из периферии только два таймера, порты да UART, но я его люблю нежно и трепетно, так как первая любовь не проходит никогда =).

К сожалению исходники его мега прошивки канули в Лету вместе с убившимся винтом, так что я не могу поделиться теми извращенскими алгоритмами, которые были туда засунуты. А там был и двухканальный ШИМ, и I2C Slave протокол, и контроль за положением шаговика с точным учетом его перемещения.

Короче, знатный был проект. Ныне валяется трупом, т.к. все лень запустить Keil uVision и написать новую прошивку. Да и ассемблер С51 я стал уже забывать.

Схема включения L298N+L297 до смешного проста — надо тупо соединить их вместе. Они настолько созданы друг для друга, что в даташите на L298N идет прямой отсыл к L297, а в доке на L297 на L298N.

Usb контроллер шагового двигателя схема

Осталось только подключить микроконтроллер.

  • На вход CW/CCW подаем направление вращения — 0 в одну сторону, 1 — в другую.
  • на вход CLOCK — импульсы. Один импульс — один шаг.
  • вход HALF/FULL задает режим работы — полный шаг/полушаг
  • RESET сбрасывает драйвер в дефолтное состояние ABCD=0101.
  • CONTROL определяет каким образом задается ШИМ, если он в нуле, то ШИМ образуется посредством выходов разрешения INH1 и INH2, а если 1 то через выходы на драйвер ABCD. Это может пригодится, если вместо L298 у которой есть куда подключать входы разрешения INH1/INH2 будет либо самодельный мост на транзисторах, либо какая-либо другая микросхема.
  • На вход Vref надо подать напряжение с потенциометра, которое будет определять максимальную перегрузочную способность. Подашь 5 вольт — будер работать на пределе, а в случае перегрузки сгорит L298, подашь меньше — при предельном токе просто заглохнет. Я вначале тупо загнал туда питание, но потом передумал и поставил подстроечный резистор — защита все же полезная вещь, плохо будет если драйвер L298 сгорит.
    Если же на защиту пофигу, то можешь заодно и резисторы, висящие на выходе sense выкинуть нафиг. Это токовые шунты, с них L297 узнает какой ток течет через драйвер L298 и решает сдохнет он и пора отрубать или еще протянет. Там нужны резисторы помощней, учитывая что ток через драйвер может достигать 4А, то при рекомендуемом сопротивлении в 0.5 Ом, будет падение напряжения порядка 2 вольт, а значит выделяемая моща будет около 4*2=8 Вт — для резистора огого! Я поставил двухваттные, но у меня и шаговик был мелкий, не способный схавать 4 ампера.

Правда на будущее, когда я буду делать роботу шаговый привод, я возьму не связку L297+L293, а микруху L6208 которая может и чуть слабей по току, но зато два в одном! Сразу подключай двигатель и работай. Если же их покупать, то на L6208 получается даже чуть дешевле.

Документация по микросхемам:

Спасибо!!! Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics!!! Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто!!! Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок!!!

Контроллер шагового двигателя в домашних условиях. Комментировать

Простой контроллер Шагового Двигателя из компьютерного барахла стоимостью ~150 рублей.

Началось мое станкостроение со случайной ссылки на немецкий станок за 2000DM, который на мой взгляд выглядел по детски, однако мог выполнять довольно много занятных функций. В тот момент, меня заинтересовала возможность рисовать платы (это было еще до появления в моей жизни ЛУТ).

Читайте также:  Ветряк своими руками двигатели как генератор

В результате протяженных поисков в сети было найдено несколько сайтов посвященных этой проблеме, однако русскоязычных среди них не было ни одного (это было примерно 3 года назад).

В общем, в конце концов, я нашел два принтера CM6337 (кстати их выпускал Орловский завод УВМ), откуда и выдрал униполярные шаговые двигатели (Dynasyn 4SHG-023F 39S, аналог ДШИ200-1-1). Параллельно с доставанием принтеров заказал и микросхемы ULN2803A(с буквой А – DIP корпус). Все собрал, запустил.

Что получил, а получил дико греющиеся микросхемы ключей, и с трудом вращающийся двигатель. Так как по схеме из Голландии для увеличения тока ключи соединены попарно, то максимальный отдаваемый ток не превышал 1А, в то время как двигателю надо было 2А (кто ж знал что я найду такие прожорливые, как мне тогда показалось, двигатели J ).

Кроме того, данные ключи построены по биполярной технологии, для тех кто не в курсе, падение напряжения может быть до 2В (если питание от 5, то фактически половина падает на сопротивлении перехода).

  • В принципе, для опытов с двигателями от 5” дисководов очень неплохой вариант, можно сделать например плоттер, однако что то более тяжелое чем карандаш (например дремель) ими вряд ли можно тягать.
  • Решил собрать свою собственную схему из дискретных элементов, благо в одном из принтеров оказалась нетронутой электроника, и я взял оттуда транзисторы КТ829 (Ток до 8А, напряжение до 100В)… Была собрана такая схема…
  • Usb контроллер шагового двигателя схема

Рис.1 – Схема драйвера для 4х фазного униполярного двигателя.

Сейчас объясню принцип. При подаче логической “1” на один из выводов (на остальных “0”), например на D0, транзистор открывается и ток течет через одну из катушек двигателя, при этом двигатель отрабатывает один шаг.

Далее единица подается на следующий вывод D1, а на D0 единица сбрасывается в ноль. Двигатель отрабатывает сладующий шаг.

Если подавать ток сразу в две соседние катушки то реализуется режим полушагов (для моих двигателей с углом поворота 1,8’ получается 400 шагов на оборот).

К общему выводу подсоединяются отводы от середины катушек двигателя (их два если проводов шесть). Очень хорошо теория шаговых двигателей описана тут – Шаговые двигатели. Управление шаговым двигателем.

, тут же приведена схема контроллера ШД на микроконтроллере AVR фирмы Atmel.

Честно говоря, мне показалось похоже на забивание гвоздей часами, однако в ней реализована очень хорошая функция как ШИМ регулирование тока обмоток.

Поняв принцип, несложно написать программу управляющую двигателем через LPT порт.

Зачем в этой схеме диоды, а за тем, что нагрузка у нас индуктивная, при возникновении ЭДС самоиндукции она разряжается через диод, при этом исключается пробой транзистора, а следовательно и вывод его из строя.

Еще одна деталь схемы – регистр RG (я использовал 555ИР33), используется как шинный формирователь, поскольку ток отдаваемый, например LPT портом мал – можно его элементарно спалить, а следовательно, есть возможность спалить весь компьютер.

Схема примитивна, и собрать такое можно минут за 15-20, если есть все детали.

Однако у такого принципа управления есть недостаток – так как формирование задержек при задании скорости вращения задается программой относительно внутренних часов компьютера то работать в многозадачной системе (Win) это все не будет! Будут просто теряться шаги (может быть в Windows и есть таймер, но я не в курсе).

Второй недостаток – это нестабилизированный ток обмоток, максимальную мощность из двигателя не выжать. Однако по простоте и надежности этот способ меня устраивает, тем более что для того, что бы не рисковать своим Атлоном 2ГГц, я собрал из барахла 486 тарантас, и кроме ДОСа там, в принципе мало, что можно поставить нормальное.

Описанная выше схема работала и в принципе неплоха, но я решил, что можно несколько переделать схему. Применить MOSFETJ ).

транзисторы (полевые), выигрыш в том, что можно коммутировать огромные токи (до 75 – 100А), при солидных для шаговых двигателей напряжениях (до 30В), и при этом детали схемы практически не греются, ну если не считать предельных значений (хотел бы я видеть тот шаговый двигатель который съест ток 100А

Как всегда в России возник вопрос, где взять детали. У меня возникла идея – извлечь транзисторы из горелых материнских плат, благо, например Атлоны кушают порядочно и транзисторы там стоят огого. Дал объявление в ФИДО, и получил предложение забрать 3 мат. платы за 100 рублей.

Прикинув что в магазине за эти деньги можно от силы купить 3 транзистора, забрал, расковырял и о чудо, хотя они все и были дохлыми, ни один транзистор в цепи питания процессора не пострадал. Так я получил пару десятков полевых транзисторов за сто рублей.

Схема, которая получилась в результате, представлена ниже.

Управление шаговым двигателем с ПК » Журнал практической электроники Датагор

Драйвер для шагового двигателя, который управляется с персонального компьютера.Привет всем! Решил продолжить тему с шаговыми двигателями и написать о своей последней разработочке. В общем задача полезна вдвойне. Я думаю что каждому человеку работающему с МК рано или поздно приходится как-то этот МК подключать к персональному компьютеру, то ли для передачи управляющего воздействия с ПК, то ли принимать какие-то данные с микропроцессорной системы. Вот и у меня задача была таковой: разработать стенд, который будет организовывать работу двух шаговых двигателей, а также получать данные о этом управлении с ПК.

Короче говоря вы вводите на компьютере данные о том какому из 2х двигателей в какую сторону и сколько вращаться, данные передаются в микропроцессорный стенд, а тот в свою очередь исполняет вашу команду.

Задача поставлена. Я разбил ее на две подзадачи: организация связи МК с ПК и сам драйвер для ШД. Ну как я делал драйвер описывается в моей предыдущей статье, так что осталось связать микроконтроллер (МК) с персональным компьютером (ПК), а потом связать все это дело в одном устройстве.Итак связь МК с ПК. Я немного полистал даташит МК ATmega8 (это самый на мой взгляд популярный AVR микроконтроллер, я с ним работаю в основном) и понял, что самый простой и подходящий для меня это интерфейс RS232, по простому СОМ порт. Он есть на любом ПК, а для ноутбука я просто использовал переходник USB to COM. Да и практически на любом МК тоже есть аппаратная реализация этого интерфейса. Говоря проще чтобы на МК заработал СОМ порт нужно просто написать определенную программку и все будет ок. Кусочек необходимого для этой задачи кода на языке С представлена ниже

????com.rar
 699 b ⇣ 185

Программа есть, остался вопрос аппаратной части реализации задачи. Дело в том что на выходе СОМ порта микроконтроллера 5 вольтовые импульсы, т.е. логическая 1 представляется в виде +5В, а логический 0 в виде 0В.

А вот СОМ порт компьютера работает с +12В и -12В. Т.е. по сути необходимо согласовать уровни. Слава богу для этого есть хорошая микросхема MAX232 или ее китайский аналог. Даташит данной микросхемы представлен ниже

????max232.

rar
 635.11 Kb ⇣ 136

Данная микросхема подключается к МК и к ней подключается разъем RS232. Также имеется небольшая обвязка. Принципиальная схема нижеСхема в Dip trace

????rs232.rar
 3.67 Kb ⇣ 145

Все ваш МК подключен к компьютеру. Теперь я еще приделал два драйвера для ШД ко всей этой системе и написал программу с помощью которой можно управлять этими двумя движками. Схема всего устройства с источником первичного питания для МКСхема в Dip trace

????stend_2_shd.rar
 9.53 Kb ⇣ 167

А теперь и код программы

????main.rar
 1.07 Kb ⇣ 223

Программа написана на языке С в IAR (это отладчик+компилятор). Сразу приношу извинения за то, что программа практически без комментариев, но задавайте вопросы, все расскажу.

Система работает так: С ПК через гипертерминал например (виндошное приложение для отправки и получения инфы через СОМ порт) отправляете номер двигателя, например 1 или 2, а после этого колличество оборотов, после того как ШД прокрутится он пришлет на СОМ порт информацию о том что он сделал. Ну если что спрашивайте.

Чуть не забыл, печатная плата в Lay.

????shag_2_1.rar
 31.38 Kb ⇣ 176

Ссылка на основную публикацию
Adblock
detector