Асинхронные двигатели скольжение режим работы

Так же известно, что в их конструкции присутствует ротор, вращающаяся часть, которая может вращаться с различными скоростями. В целом можно сказать, что в асинхронных машинах скорость вращения изменяется только у ротора.

Многочисленные наблюдения показали, что в зависимости от частоты вращения ротора асинхронной машины, с ней происходят различные явления.

Для упрощения понимания этого вопроса, был введен параметр скольжение S – разность скоростей вращения магнитного поля статора, от скорости вращения ротора:

Асинхронные двигатели скольжение режим работыСкольжение

  • Эти скорости обозначают буквенно: n – скорость вращения ротора; n1 – скорость вращения магнитного поля.
  • Режим работы асинхронной машины зависит именно от этого значения разности скоростей вращения магнитного поля статора и скорости вращения ротора.
  • Различают следующие режимы работы асинхронных машин:
  • Режим двигателя;
  • Режим генератора;
  • Режим электромагнитного тормоза;
  • Режим динамического торможения;

Режим двигателя

Асинхронные двигатели стали очень популярна и наиболее часто применяемая в электроприводах. Режим электродвигателя применяется для приведения во вращение различные устройства, механизмы, насосы, лебедки, редуктора и т.д. путем преобразования электрической энергии в механическую.

 Как уже многим известно, что её принцип действия объясняется взаимодействием двух магнитных полей статора и ротора. Магнитное поле статора создается системой трехфазных обмоток и магнитопровода, расположенных непосредственно на статоре (корпусе асинхронной машины).

Это поля является вращающимся, так как в трех фазной цепи, ток протекает из фазы А в фазу В, из фазы В в фазу С, а из фазы С обратно в фазу А. Обмотки каждой фазы располагают на статоре так, что бы равномерно заполнить всю окружность, т.е.

окружность занимает 360 градусов, имея три обмотки, делим 360/3 получаем 120 градусов на каждую обмотку.

Асинхронные двигатели скольжение режим работыобмотки статора

Это вращающееся магнитное поле пронизывая ротор, индуцирует в нем ЭДС, так как ротор короткозамкнутый, то по нему протекает ток. Протекание тока вызывает образование у ротора собственного магнитного поля.

Поле статора, которое вращается с скоростью n1 взаимодействует с полем ротора, которое является неподвижным, и старается остановить, затормозить поле статора. Так как ротор закреплен на подшипниках, он способен свободно вращаться вокруг своей оси.

Получается, что магнитное поля статора притягивает поле ротора, увлекает его за собой с определенной силой, в результате чего и сам ротор начинает вращаться.

Особенностью этого режима является то, что скорость вращения магнитного поля статора и скорость вращения ротора не должны быть равными, тем более, скорость ротора всегда меньше.

Если же каким-либо образом их скорости будут равными, то исходя из явления электромагнитной индукции, обязательна разность магнитного потока, пересекающего тот или иной контур, что и обеспечивается отставанием ротора от магнитного поля статора.

Если же все-таки их скорости сравняются, по короткозамкнутой обмотке ротора перестанет протекать электрический ток, исчернит его магнитное поле и ротор не будит увлекаться полем статора.  Скольжение в режиме электродвигателя должно быть положительным числом и не равным нулю.

Стоит добавить, что режим двигателя у асинхронных машин является самым часто используемым.

Режим генератора

Режим генератора у асинхронных машин является полной противоположностью режиму двигателя.  Самым главным отличием является то, что при режиме двигателя, асинхронная машина потребляет из сети электрическую энергию. А в режиме генератора наоборот отдает в сеть выработанную электрическую энергию.

Режим генератора возможен только тогда, когда скорость вращения ротора n будет выше скорости вращающегося магнитного поля статора. В этом случаи скольжение S будит отрицательным. Для этого необходимо ускорить ротор синхронной машины, то есть посадить на вал ротора, какой-либо механизм (турбина, редуктор, другой двигатель).

Асинхронные двигатели скольжение режим работырежим генератора

Допустим ротор мы разогнали до 3500 оборотов в минуту, а скорость магнитного поля статора 3000 оборотов в минуту, определим скольжение:Асинхронные двигатели скольжение режим работы

Режим генератора у асинхронных машин не является часто используемым, и может применяться в узких специализированных областях, в маломощных электростанциях.

Стоит отметить, что при таком режиме работы, отдаваемая в сеть электроэнергия совпадает по частоте с частотой самой сети. Так как она зависит только от частоты вращения магнитного поля статора, которая как мы знаем не изменяется.

В использовании таких генераторов есть огромный плюс, в его устройстве отсутствуют скользящие контакты, вращающиеся обмотки, это обеспечивает надежную и долговременную эксплуатацию.

Так же эти генераторы мало восприимчивы к коротким замыканиям в сети.

Еще не маловажным условием работы является, наличие остаточной намагниченности ротора, которое усиливается конденсаторными установками, включенными в цепи статорных обмоток.

Режим электромагнитного торможения

Режим электромагнитного торможения является еще более специфичными специализированным.

Вся суть этого режима в том, что если вращение ротора асинхронной машины не совпадает с направлением вращения магнитного поля статора, то ротор будит затормаживаться под действием этого магнитного поля статора.

Такой режим возможен только при реверсивном подключении асинхронной машины, так как путем переключения двух фаз достигается изменение направления вращения магнитного поля статора, и используется в различных грузоподъемных и транспортировочных устройствах.

Этот режим часто называют режимом торможения противотоком или противовключением. При таком режиме, если нам необходимо остановить двигатель, при полной остановке, статор необходимо отключить от сети, так как вал начнет вращаться в обратном направлении.

Режим динамического торможения

В таком режиме, асинхронная машина отключается от трех фазной сети, и на обмотки статора подается постоянный ток. Таким образом на статоре образуется постоянное магнитное поле (постоянный магнит), которое тормозит ротор двигателя.

Все выше представленные режимы работы асинхронных машин, кроме режима двигателя, являются специализированными, и используются только в определенных установках, устройствах, станках и т.д.

Об особенностях электродвигателей с повышенным скольжением

Скольжение —это важная характеристика асинхронного электродвигателя, которая определяется как относительная разность скоростей вращения ротора и изменения переменного магнитного потока, создаваемого обмотками статора двигателя переменного тока. Измеряется в относительных единицах и в процентах.

Асинхронные трехфазные двигатели с повышенным скольжением

Двигатели специального назначения с повышенным скольжением строятся на базе унифицированных общепромышленных двигателей, а в маркировку добавляется буква «С» после названия серии (АИРС, АС, 5АС, АДМС, 4АС.). Габаритно-присоединительные размеры двигателей с повышенным скольжением соответствуют аналогичным размерам общепромышленных. Скольжение при номинальной нагрузке у этих электродвигателей выше, чем у базовых, а критическое скольжение составляет около 40%.

Асинхронные двигатели скольжение режим работы Асинхронные двигатели скольжение режим работы Асинхронные двигатели скольжение режим работы

Повышенное скольжение достигается двумя способами: занижением индукции путём увеличения витков в обмотке статора или (чаще всего) применением роторной обмотки, усиленной специальным сплавом, имеющим повышенное сопротивление.

Если объяснять очень упрощенно, то чем больше сопротивление обмотки ротора, тем ток в роторе меньше и магнитное поле, создаваемое током в этой обмотке, тоже становится меньше.

Это и обуславливает повышенное скольжение, магнитное поле статора как бы слабее «цепляет» ротор с ослабленным магнитным полем.

Применение двигателей с повышенным скольжением

Главным достоинством агрегатов повышенного скольжения является возможность работать с большими нагрузками, с неравномерной пульсирующей (ударной) нагрузкой, а также в повторно-кратковременном режиме с частыми пусками и остановками (режимы S2, S3, S4, S6). В таких условиях обычных стандартный двигатель может перегореть, т.к. он предназначен для работы с редкими остановками и пусками. В остальном подобные электродвигатели имеют практически полное сходство со стандартными моделями общепромышленных двигателей.

Электродвигатели с повышенным скольжением используются для привода механизмов с пульсирующей нагрузкой (например, поршневые компрессоры малой мощности) и с ударной нагрузкой (молоты, прессовое оборудование), а также для привода подъемно-транспортных машин. 

Режимы работы асинхронных двигателей

Лекция №19 Скольжение. Пуск асинхронных двигателей

Скольжение

Отличительным признаком асинхронного двигателя является всегда существующая положительная разность, n1 – n2> 0. Ротор никогда не может достигнуть частоты вращения магнитного поля n1, так как при равенстве n1= n2 исчезнут электромагнитные силы, приводящие его в движение.

  • Разность частот вращения магнитного поля и ротора
  • n1 – n2 = ns
  • называют частотой скольжения. Аналогичная разность скоростей
  • Ω1 – Ω2 = Ωs
  • Называется скоростью скольжения.
  • Отношение частоты скольжения к частоте вращения поля n1 обозначают sи называют скольжением:
Читайте также:  Land cruiser 200 дизель какой двигатель

Очевидно, что в первый момент пуска двигателя s = 1. Асинхронные двигатели проектируют так, что на холостом ходу sх = 0,001 ÷ 0,005, а при номинальной нагрузке sном = 0,05.

В установившемся режиме ns, Ωs и s – постоянные. Это означает, что вращающий момент двигателя М уравновешивает противодействующий момент Мпр.

Если по каким – либо причинам противодействующий момент увеличится, то ротор начнет тормозиться, т. е. скорость вращения Ω2 будет падать, а скорость его скольжения – увеличиваться. Но последнее вызовет изменение ряда взаимно связанных величин. Увеличатся Э.Д.С.

e2и токи I2в проводниках обмотки ротора, электромагнитные силы Fэм2 и вращающий момент М.

Когда вращающий момент М станет равным противодействующему Мпр, изменения прекратятся. Двигатель возвратится в установившейся режим. Но скорость вращения ротора Ω2 теперь меньше.

В случае уменьшения противодействующего момента произойдут аналогичные, но противоположно направленные физические процессы. Это означает, что асинхронный двигатель обладает свойством автоматического изменения вращающего момента, т. е. свойством саморегулирования.

Режимы работы асинхронных двигателей

Двигательный режим: Асинхронные двигатели скольжение режим работы При n 1

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

Асинхронные двигатели скольжение режим работы

Мн – номинальный момент; Мп – пусковой момент; Мmax – критический момент

Из анализа графика механической характеристики также следует, что устойчивая работа асинхронного двигателя возможна при скольжениях, меньших критического (s < sкр), т. Дело в том, что именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента.

Понятие скольжения асинхронного двигателя

Скольжение может изменяться. Это зависит о того, в каком режиме работает электродвигатель, величины напряжения сети и нагрузки на машину. Но что же это за характеристика и от чего она зависит? Разберемся ниже!

Асинхронные двигатели скольжение режим работы

Что представляет собой скольжение асинхронной машины 

В целом, принцип, по которому происходит работа трехфазного мотора очень прост. К обмотке статора подают напряжение, питающее движок. Благодаря ему появляется магнитный поток, смещенный на 120 градусов в каждой из трех фаз. А тот поток, который носит имя суммирующего будет еще и вращающимся.

Обмотка якоря – замкнутый контур. В ней появляется электродвижущая сила (ЭДС), а магнитный поток, возникающей не без ее помощи, приводит ротор в работу: он начинает вращаться. Электромагнитный момент всегда будет пытаться сравнять темпы двух полей главных элементов привода: статора и ротора.

Величина, которая определяет разницу между скоростями вращения вышеописанных магнитных полей и есть то самое скольжение. Мы все знаем, что ротор никогда не будет поспевать за статором, значение это никогда не будет больше единицы. Измерение можно проводить как в процентах, так и в относительных величинах.

Чтобы рассчитать величину скольжения (S), нужно знать показатель частоты, с которой вращается магнитное поле (n1) и частоту, с которой вращается магнитное поле в роторе. Формула, по которой производится расчет, выглядит так:

Асинхронные двигатели скольжение режим работы

Скольжение – чрезвычайно важная характеристика мотора. Она описывает то, насколько исправна работа машины.

Скольжение в разных условиях работы привода

Если режим работы агрегата – холостой, искомый показатель всегда будет близок к нулевому значению или, по крайней мере, не превысит 3%. Это связано с тем, что n1 будет практически равен n2.

Несмотря на то, что значение всегда близко к нулю, нулевым оно быть не может, потому что поля ротора и статора не пересекаются.

Другими словами, вращение мотора отсутствует, как и подача на него напряжения.

Скольжение (если считать его в процентах) не будет нулевым даже в том случае, когда электродвигатель находится в режиме идеального холостого хода. Зато, если агрегат запущен в режиме генератора, S может быть отрицательным. 

Такой режим (в нем ротор вращается противоположно относительно статора) будет показывать S, значениям бывают разными, но изменяются только в следующих пределах:

-∞

§78. Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей.

Холостой ход.

Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток.

Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться.

Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения.

Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке).

По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора).

Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры.

Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие.

Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим.

Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается.

Но одновременно увеличивается частота n1— n персечения вращающимся полем проводников обмотки ротора, а следовательно, э. д. с. Е2, индуцированная в этой обмотке, ток в роторе I2 и образованный им электромагнитный вращающий момент М.

Этот процесс будет продолжаться до тех пор, пока электромагнитный момент двигателя M не сравняется с нагрузочным моментом Мвн.

При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки.

При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться.

Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

f2/f1 = (n1— n)/n1= s или f2 = f1s (83)

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cosφ1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260).

Читайте также:  Волга 105 двигатель 406 троит

Асинхронные двигатели скольжение режим работыРис. 260. Энергетическая диаграмма асинхронного двигателя

В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ΔРэл1 и ротора ΔРэл2, магнитные ΔРм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ΔРмх от трения в подшипниках и вращающихся частей о воздух.

Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.

Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cosφ2 (здесь φ2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора).

Поэтому

  • M = cмФтI2 cosφ2 (84)
  • где
  • Фт — амплитуда магнитного потока, созданного обмоткой статора;
  • — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников.

Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором.

Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем.

Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср.

Легко заметить, что к проводникам, лежащим на дуге, равной 180° — φ2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге φ2 — тормозящие силы.

Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол φ2. Электромагнитный момент М зависит от скольжения s.

Асинхронные двигатели скольжение режим работыРис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cosφ2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

При s < 10-20% увеличение скольжения приводит к незначительному уменьшению cos φ2, вследствие чего активная составляющая тока в обмотке ротора I2cos φ2 и электромагнитный момент М возрастают.

При некотором критическом скольжении sкр двигатель развивает наибольший момент Мmax, который определяет его перегрузочную способность.

При дальнейшем увеличении скольжения (большем sкр) происходит резкое уменьшение cos ?2, поэтому активная составляющая тока I2cos φ2 и электромагнитный момент М уменьшаются.

Номинальный вращающий момент Мном двигатели средней и большой мощности развивают при скольжении Sном = 2-4%.

Согласно государственным стандартам на асинхронные двигатели отношение Mmax/Mном = 1,8-2,5. Критическое скольжение sкр для мощных двигателей составляет 5—10%, для двигателей средней и малой мощности — от 10 до 20 %.

Асинхронный двигатель, как и любая электрическая машина, может работать в генераторном режиме, создавая тормозной момент. Этот режим используется для электрического торможения приводов.

Режим пуска.

В начальный момент пуска ротор двигателя неподвижен: скольжение s=1, магнитное поле пересекает ротор с максимальной частотой, индуцируя в нем наибольшую э. д. с. Е2. Так как ток в роторе I2 определяется значением э. д. с. Е2, то в начальный момент пуска он будет наибольшим. Наибольшим будет и ток в статоре.

Обычно пусковой ток двигателя в 5—7 раз больше номинального. Вращающий момент Мп при пуске называется пусковым. Он обычно меньше наибольшего момента, который может развить двигатель. Для двигателей различных типов и мощностей отношение Мп/Мном = 0,7 – 1,8.

Асинхронные двигатели. Принцип действия и режимы работы

Асинхронные двигатели скольжение режим работы

Асинхронно  – слово греческого происхождения (ασύγχρονα, где: α- отрицание, σύγ — вместе, χρονα – время), используется в русском языке для обозначения (наименования) процессов не совпадающих во времени.

Асинхронной, в электротехнике, принято называть машину, в процессе работы которой частота вращения ротора не равна частоте изменения магнитного поля создаваемого обмотками статора, вызывающего это вращение.

К асинхронным электрическим машинам относятся: асинхронные двигатели с короткозамкнутым ротором, асинхронные двигатели с фазным ротором, асинхронные микродвигатели общего применения, асинхронные тахогенераторы и другие, работающие по тому же принципу.

Асинхронные электрические машины очень широко распространены благодаря таким качествам как: высокая надёжность, относительно низкая стоимость, приемлемые габариты и вес, просты в обслуживании.

С появлением современных частотных преобразователей значительно расширился спектр применения асинхронных электродвигателей, благодаря возможности довольно просто и оптимально реализовывать такие функции как управление по скорости и моменту, вплоть до решения задач позиционирования.

Не удивительно, что асинхронные двигатели применяются повсюду, особенно это касается асинхронных электродвигателей, объём выпуска которых занимает около 90%  общего объёма мирового выпуска электрических машин.

Принцип действия и режимы работы

Рассмотрим принцип работы асинхронного электродвигателя с помощью  электромагнитной схемы (рис.1,а), которая отличается от электромагнитной схемы трансформатора тем, что неподвижный статор 1 представляет собой первичную обмотку, а вращающийся ротор 3 – вторичную.

Магнитная связь между ротором и статором зависит от величины воздушного зазора между ними, поэтому, при изготовлении машины, в большинстве случаев, его стараются делать как можно меньше. На статоре расположена обмотка 2, катушки которой размещаются равномерно по его окружности.

Обмотку  статора (фазы A-X , B-Y, C-Z ) выполняют трёхфазной, или в общем случае многофазной, и соединяют её фазы в Y (звезду) или в  (треугольник), что оказывает существенное влияние на такие характеристики как: мощность, плавность хода, величины пусковых токов и других параметров.

Обмотку ротора а-x, b-y, c-z также выполняют трёхфазной или многофазной и тоже равномерно размещают по его окружности. В простейшем случаях включения, фазы ротора а-x, b-y, c-z, замыкают накоротко (см. рис. 1,б).

Асинхронные двигатели скольжение режим работыРис.1. Электромагнитная схема асинхронного двигателя (а – направление электромагнитного момента при работе в режиме двигателя, б – подключение к сети трёхфазного тока) , где: 1- неподвижный статор; 2- обмотка статора; 3- вращающийся ротор; 4- обмотка ротора.

  • Когда обмотки статора асинхронной электрической машины подключены к сети трехфазного тока, в нём создаётся вращающееся магнитное поле, частота вращения которого (n1) синхронна с частотой сети, питающей эти обмотки, и вычисляется по формуле:
  • n1 = 60 x f1 / p
  • где:  n1 – частота вращения магнитного поля статора; f1 – частота сети; p – число пар полюсов обмоток статора.

Вращающееся магнитное поле индуктирует в проводниках ротора электрической  машины ЭДС, что вызывает прохождение по ним тока, взаимодействие которого с магнитным потоком создаёт электромагнитный момент.

Направление ЭДС, индуктированной в проводниках обмоток ротора, показано на рисунке 1, а согласно правилу правой руки, для случая, когда вращении магнитного потока (Ф) происходит по часовой стрелке.

Читайте также:  В чем причина вибрации двигателя на акпп

Крестики и точки на рисунке показывают направление активной составляющей тока ротора, совпадающего по фазе с индуктированной ЭДС.

Известно, что если проводники с током расположить в магнитном поле, то на них будут действовать электромагнитые силы, направление которых можно определить при помощи правила левой руки. Приложенное к каждому проводнику ротора суммарное усилие (Fрез), создаёт электромагнитный момент (М), который “увлекает” ротор за вращающимся магнитным полем, создаваемым обмотками статора.

Ротор вращается, если величина момента (М) достаточна для преодоления внутренних сил трения (подшипники, сопротивление  воздуха и так далее), а также тормозного момента, приложенного к валу от приводимого во вращение  механизма, если таковой имеется. Установившаяся частота вращения ротора (n2) зависит от соотношения вышеперечисленных сил и создаваемых ими моментов. Очевидно, что при этом будет выполняться соотношение:

0 ≤ n2 0%).

Но асинхронная электрическая машина может работать и в других режимах.

Если её ротор разогнать до частоты превышающей частоту магнитного поля статора (то есть n2>n1) при помощи внешнего момента другого механизма (например механически соединить с двигателем, вал которого вращается быстрее), то изменятся направление ЭДС и активной составляющей тока в проводниках обмотки ротора, что вызовет переход машины в генераторный режим работы (рис.2,а).

Электромагнитный момент (М), при этом, становится тормозящим изменив своё направление, а электрическая машина, получая механическую энергию от внешнего источника, превращает её в электрическую и отдаёт в сеть, питающую обмотки статора. В генераторном режиме выполняются соотношения:  n2>n1, S

Скольжение асинхронного двигателя: что это такое и как найти

Скольжение – это одна из основных характеристик электродвигателя. Она изменяется в зависимости от режима работы, нагрузки на валу и питающего напряжения. Давайте подробнее разберемся, что такое скольжение электродвигателя, от чего оно зависит и как определяется.

Принцип работы трехфазного асинхронного двигателя довольно прост. На обмотку статора подается питающее напряжение, которое создает магнитный поток, в каждой фазе он будет смещен на 120 градусов. При этом суммирующий магнитный поток будет вращающимся.

Обмотка ротора является замкнутым контуром, в ней наводится ЭДС и возникающий магнитный поток придает вращение ротору, в направлении движения магнитного потока статора. Вращающий электромагнитный момент пытается уравнять скорости вращения магнитных полей статора и ротора.

Величина определяющая разность скоростей вращения магнитных полей ротора и статора, называется скольжение. Так как ротор асинхронного двигателя всегда вращается медленнее, чем поле статора — оно обычно меньше единицы. Может измеряться в относительных единицах или процентах.

  • Высчитывается она по формуле:
  • Асинхронные двигатели скольжение режим работы
  • где n1— это частота вращения магнитного поля, n2 – частота вращения магнитного поля ротора.
  • Скольжение, это важная характеристика, характеризующая нормальную работу асинхронного электродвигателя.

Величина скольжения в разных режимах работы

В режиме холостого хода скольжение близко к нулю и составляет 2-3%, ввиду того, что n1 почти равняется n2. Нулю оно не может быть равным, потому как в этом случае поле статора не пересекает поле ротора, простыми словами, двигатель не вращается и питающее на него напряжение не подается.

Даже в режиме идеального холостого хода, величина скольжения, выраженная в процентах, не будет равной нулю. S может принимать и отрицательные значения, в том случае, когда электродвигатель работает в генераторном режиме.

  1. В генераторном режиме (вращение ротора противоположно направлению поля статора) скольжение ЭД будет в значениях -∞

Скольжение асинхронного двигателя: что это такое, как определяется и от чего зависит

Электрооборудование

profelectro

Одним из главных параметров асинхронного электродвигателя является скольжение. Это переменная величина. Меняться может, исходя из того, в каких режимах работает мотор, величины напряжения, валовой нагрузки.

В статье мы рассмотрим, что собой представляет это явление, как вычисляется, от каких условий зависит.

Что это такое

Принцип действия 3-х фазного электродвигателя (асинхронного) достаточно простой. К статорной обмотке подаётся питание. В результате образуется магнитный поток, смещённый на сто двадцать градусов в фазах. Общий поток, при этом, будет вращаться.

Обмотка представляет собой замкнутый контур, в котором возникает электродвижущая сила. Магнитный поток вращает ротор по направлению статорного потока. Крутящийся электромагнит стремится выровнять вращающие скорости статорного и роторного полей.

Значение, показывающее разницу быстроты вращения статорного и роторного полей и есть скольжение. Поскольку в асинхронном электродвигателе ротор всегда крутится медленней статора, значение, обычно, не превышает единицы. Измеряется в процентах либо единицах.

Вычисляется по следующей формуле:

Здесь n1 – скорость статора, n2 – скорость ротора.

Скольжение – один из основных параметров, отображающий корректность функционирования асинхронного электродвигателя.

Параметры в различных рабочих режимах

Когда электродвигатель обесточен, вращение не происходит, потому что статорное поле не пересекается с роторным полем. В этом случае величина равна двум или трём процентам, т.е. колеблется около нуля.

Если даже параметр холостого хода идеален, процентное значение нулю равняться не будет. Величина может быть и отрицательной, если двигатель функционирует в режиме генератора. В таком режиме (ротор вращается против статора) значение S будет меньше нуля.

При электромагнитном торможении, величина Sпревышает единицу с положительным знаком. Величина токовой частоты в роторных обмотках равняется токовой частоте сети исключительно при пусковом моменте.

  • Роторная токовая частота пропорциональна сопротивлению индукции, поэтому роторный ток зависим от скольжения асинхронного двигателя.
  • Момент вращения АД находится в зависимости от значения S, поскольку определяется величинами токового и магнитного потоков, угловым смещением ЭДС и роторным током.
  • Для подробного изучения параметров электродвигателя определяется зависимость, показанная на графике вверху.
  • При разных показателях асинхронном двигателе момент вращения можно корректировать при помощи сопротивления, включённого в цепи роторных обмоток.
  • Если ротор замкнут «накоротко», вращающий момент изменяется либо частотными преобразователями, либо применением двигателей с изменяющимися параметрами.

При нагрузочном номинале двигателя показатель скольжения находится между двумя и восемью процентами. При добавлении нагрузки скольжение ускоряется, потому что роторное поле начнёт больше отставать от статорного поля.

Ускорение  неминуемо приведёт к росту роторного тока и момента вращения. Параллельно с этим возрастает сопротивление, что связано с активными роторными потерями, токовые показатели снижаются, в связи с чем, вращение растёт гораздо медленней скольжения.

При определённой скорости скольжения момент вращения достигнет максимума и начнёт замедляться. Максимальное значение является критическим и обозначается Sкр.

В технической документации указываются параметры асинхронного двигателя. По ним строится график, отвечающий на вопросы, связанные с работой асинхронного электрического двигателя, применяемого в качестве привода.

Критический максимум задаёт параметр мгновенного допустимого перегруза двигателя. Когда этот параметр превышается, происходит остановка двигателя (опрокидывание). Это аварийный режим.

Методы измерений

Есть несколько методов произвести замер скорости скольжения двигателя. Когда скорость существенно разнится с синхронным вращением, её определяют тахометром либо тахогенератором, подключённым к валу асинхронного двигателя.

Метод определения стробоскопом с лампой неонового свет применим при скольжении меньше пяти процентов. На двигательном валу мелом рисуют отметку или ставят стробоскоп.

Подают свет от лампы и считают количество оборотов за определённый промежуток времени и, используя формулы, определяют значение.

Ещё для замера скорости скольжения применяют катушку индуктивности. Оптимальным вариантом будет катушка контактора тока постоянной величины. К ней подключают милливольтметр и помещают в окончание роторного вала.

По количеству колебаний стрелки за определённый промежуток времени с помощью формулы вычисляют скорость вращения.

Кроме того, у двигателя с ротором фазы величину скольжения определяют амперметром (магнитоэлектрическим). Прибор подсоединяют к одной из роторных фаз и по количеству стрелочных колебаний, опять-таки применяя формулу, получают результат.

Мы выяснили, что такое скольжение двигателя, способы его определения. Свои вопросы оставляйте в х.

Ссылка на основную публикацию
Adblock
detector