Биполярный шаговый двигатель как запустить

Введение.

Шаговый двигатель (далее ШД) — особая разновидность двигателей, который позволяет точно управлять углом поворота ротора. ШД  относится к синхронным безщёточным двигателям, имеет несколько обмоток на статоре (2, 4 или 8), ротор же выполнен из магнито-мягких (способных намагничиваться) или магнито-твердых материалов  (постоянных магнитов) и их сочетаний.

На данный момент распространены биполярные ШД, обладающие двумя обмотками на статоре. Например, ШД типоразмера NEMA17, одни из самых распространенных биполярных ШД.

Биполярный шаговый двигатель как запустить

Ток в обмотках статора течет то в одну, то в другую сторону попеременно. Поэтому для управления биполярным ШД необходимы два Н-моста, по одному мосту на обмотку. 

На следующей схеме приведена реализация управления биполярным ШД при помощи двух Н-мостов, каждый из которых построен из 6 транзисторов. Управление осуществляется при помощи микроконтроллера, у которого задействовано 4 выхода. Да и в самой прошивке микроконтроллера придется перебирать выводы управления ШД “вручную”.

Биполярный шаговый двигатель как запустить

Также можно использовать, например, микросхему L293 и аналогичные ей микросхемы (сдвоенный Н-мост), но и в этом случае для управление одним биполярным ШД потребуется 4 вывода микроконтроллера.

Биполярный шаговый двигатель как запустить

На фото пример готовой платы с микросхемой L298 для подключения по вышеприведенной схеме.

Биполярный шаговый двигатель как запустить

Следующая схема состоит из сдвоенного Н-моста  L298 и специального драйвера L297, который преобразует протокол step/dir в понятный микросхеме L298 порядок переключения обмоток. Кроме того, L297 способна реализовать полушаговый режим работы ШД. То есть логика управления упростилась, но драйвер “оброс” ещё одной микросхемой.

Биполярный шаговый двигатель как запустить

На данный момент все вышеприведенные схемы управления биполярными ШД потеряли актуальность. Потому что рынок наполнен драйверами биполярных ШД, стоимость которых достаточно низка, чтобы перестать заниматься изобретением велосипеда.

Драйверы для управления биполярными ШД работают по протоколу step/dir, содержат в себе защитные диоды, позволяют устанавливать силу тока, протекающую через обмотки ШД и позволяют устанавливать дробный шаг ШД (?, ?, ? и так далее), что в свою очередь позволяет контролировать угол поворота ротора с большей точностью.

Промышленный драйвер для больших ШД, качественный и дорого стоит:

Биполярный шаговый двигатель как запустить

Драйвер для не больших ШД, типа NEMA17  и меньше:

Биполярный шаговый двигатель как запустить

Сейчас это всё доступно, как по цене, так и по наличию в онлайн и оффлайн магазинах. Но изначально на рынке отсутствовали доступные решения для управления биполярными ШД, поэтому широкое распространение получили униполярные ШД с 4 (реже с 8) обмотками, ток в каждой из которых течет только в одном направлении.

Это позволяет управлять униполярным ШД при помощи ключей. Как видно из следующей схемы, для управления униполярным ШД при помощи транзисторов снова необходимо задействовать четыре вывода микроконтроллера, а также необходимо тратить ресурсы микроконтроллера на перебор выходов “вручную”.

Но в этом случае, используется всего 4 транзистора, а не 12, как в случае с биполярным ШД.

Биполярный шаговый двигатель как запустить

Изготовление драйверов униполярных ШД, работающих по протоколу  step/dir представляет некоторые сложности для новичков-радиолюбителей, но является вполне выполнимой задачей.

Реализация драйвера униполярного ШД показана на следующей схеме.

Биполярный шаговый двигатель как запустить

Но зачем снова изобретать велосипед, если драйверы для ШД стоят не дорого и доступны… ах да, я об этом уже говорил.

Но позвольте, те ШД, что в обилии встречаются в магазинах, предназначены для биполярных ШД. Причем тут униполярные?

  • Дело в том, что почти любой униполярный ШД можно переделать в биполярный, чаще всего даже без разборки, лишь правильным подключением обмоток. 
  • Униполярный в биполярный.
  • Чтобы определить, какой тип ШД перед вами, достаточно посчитать количество выводов.
  • 4 вывода — перед вами биполярный ШД, поздравляю вас, переделка не требуется.

Биполярный шаговый двигатель как запустить

  • 5 выводов — униполярный ШД, в котором один из выводов каждой из четырех катушек  соединен с остальными (смотрите изображение). Пример такого ШД — распространенный в настоящее время компактный ШД 28BYJ-48. 

Переделать такой ШД в биполярный простым переключением катушек не представляется возможным. Необходима разборка двигателя. 

В случае с 28BYJ-48 (на фото выше) переделка сводится к снятию крышки и перерезанию одной дорожки на печатной плате. Ну и соответственно один провод (красный) можно будет выпаять и удалить. При этом момент увеличится в 1,4 раза.

  • 6 выводов — очень похож на 5-выводной, за исключением того, что центральные выводы катушек не соединены между собой. Для такого ШД существует 2 способа использования: 
  1. игнорируем центральные выводы катушек, при этом момент увеличивается в 1.4 раза (корень из 2). Момент стабилен на низких частотах.
  2. игнорируем один из крайних выводов катушки — ШД работает с параметрами, заявленными в даташите (момент, ток). Момент стабилен на высоких частотах.
  • 8 выводов, четыре независимых катушки. Существует три способа подключения таких ШД:
  1. игнорируем одну из обмоток в паре обмоток, ШД работает с параметрами, заявленными в даташите (момент, ток), момент стабилен на высоких частотах.
  2. соединяем пару обмоток последовательно — момент увеличивается в 1,4 раза, момент становится стабилен на более низких частотах, чем в первом варианте.
  3. соединяем пару обмоток параллельно — момент увеличивается в 2 раза и становится стабилен на более высоких частотах, чем в первом варианте.

Как видно из приведенных выше примеров, использование униполярных ШД с биполярными драйверами вполне реально. Кроме того, в зависимости от типа ШД и способа его подключения его параметры могут меняться, что можно использовать в соответствии с вашими целями.

Заключение.

На данный момент у меня набралась коллекция униполярных ШД от старых матричных принтеров, жестких дисков 80-х годов и прочего устаревшего оборудования. К тому же, я активно использую миниатюрные 28BYJ-48, каждый из которых переделываю для работы с биполярным драйвером для шаговых двигателей.

С каждым годом количество униполярных двигателей в обиходе радиолюбителей становится всё меньше. Причиной тому снижение цен на шаговые двигатели типоразмера NEMA и утилизация старых двигателей охотниками за цветными металлами.

Тем не менее, я надеюсь, что приведенная мной информация позволит дать вторую жизнь устаревшим униполярным шаговым двигателям, которые еще остались в использовании у радиолюбителей.

Урок 33. Биполярный шаговый двигатель в системе Ардуино

Биполярный шаговый двигатель как запустить

С помощью драйвера L298N подключим к плате Ардуино биполярный шаговый двигатель. Для управления будем использовать программы из предыдущих уроков для униполярных двигателей.

Предыдущий урок     Список уроков     Следующий урок

Использование шаговых двигателей в биполярном режиме дает:

  • Повышение крутящего момента примерно на 40% по сравнению с униполярным двигателем.
  • Позволяет применять двигатели с любой конфигурацией фазных обмоток.
  • Недостаток биполярного режима – более сложный драйвер.
  • Драйвер биполярного шагового двигателя.
  • У биполярного шагового двигателя две обмотки, по одной для каждой фазы.
  • Биполярный шаговый двигатель как запустить
    Если для управления униполярным двигателем достаточно 4 ключей, замыкающих выводы на землю, то биполярный привод требует более сложной коммутации обмоток. Необходимо каждую обмотку:
  • подключать к источнику питания в прямой полярности;
  • отключать;
  • подключать к источнику в противоположной полярности.

Такую коммутацию может обеспечить мостовая схема с четырьмя ключами.

Биполярный шаговый двигатель как запустить
При замыкании ключей 1 и 2 на обмотку подается напряжение питания в прямом направлении. Замыкание ключей 3 и 4 подключает источник питания в обратной полярности.

Драйвер биполярного шагового двигателя намного сложнее, чем драйвер униполярного привода.

  • Требуется 4 ключа на обмотку, т.е. 8 ключей на двигатель.
  • Необходимы сложные схемы управления верхними ключами (ключи 1, 4) от логических сигналов микроконтроллера, “привязанных” к земле.
  • Существуют проблема сквозных токов. Они возникают при одновременном включении транзисторов из одного плеча (ключей 1,3 или 2,4). Это может привести к замыканию источника питания и выгоранию ключей.
  • Сквозные токи могут появляться из-за неодинакового быстродействия верхних и нижних ключей. Например, верхний ключ уже открылся, а нижний не успел закрыться.

Поэтому реализовать схему мощного драйвера биполярного шагового двигателя с использованием дискретных элементов достаточно сложно. Гораздо практичнее, удобнее, дешевле использовать интегральный драйвер.

Драйвер биполярного шагового двигателя L298N.

Микросхема L298, наверное, самый распространенный биполярный драйвер.

Биполярный шаговый двигатель как запустить
Это полный мостовой драйвер, позволяющий управлять биполярными нагрузками с током до 2 А и максимальным напряжением 46 В. Подробное описание микросхемы L298N можно посмотреть по этой ссылке.

Читайте также:  Sla4052 схема управления шаговым двигателем

На базе микросхемы L298N разработан модуль L298N.

Биполярный шаговый двигатель как запустить
Конструктивно он выполнен на одной плате размерами 43 x 43 мм. На плате установлены:

  •  микросхема L298N с радиатором охлаждения;
  •  клеммные колодки для подключения питания и нагрузки;
  •  разъем для подключения управляющих сигналов;
  •  стабилизатор напряжения 5 В;
  •  защитные диоды.
  1. Биполярный шаговый двигатель как запустить
  2. Принципиальная схема модуля L298N.
  3. Микросхема L298N включена по стандартной схеме.
  4. Биполярный шаговый двигатель как запустить

Диоды защищают ключи от выбросов при коммутации обмоток. Через них происходит  разряд энергии запасенной в индуктивности обмоток.

Модуль содержит стабилизатор напряжения + 5 В для питания логической части микросхемы. Напряжение +5 В формируется из напряжения питания двигателя. На клеммной колодке оно обозначено +12 V, но может меняться в широких пределах 8 … 46 В.

Управления полумостами происходит от входных сигналов IN1, …, IN4. Уровни сигналов 0 / 5 В. При низком уровне выход подключается к земле, при высоком – к источнику питания двигателя (+12 V).

Предельно-допустимый ток фазы 2 А. Защиты по току в модуле нет. Но реализация токовой защиты значительно усложняет схему, а короткое замыкание обмоток двигателя событие маловероятное. Я с таким не встречался. К тому же механическое блокирование вала шагового привода не вызывает перегрузки по току.

Это все очень коротко. Подробно можно посмотреть в этой статье.

По моей партнерской ссылке цена модуля L298N составляет всего 200 руб. (на ноябрь 2016 г.). В то время как одна микросхема L298N в Ростове стоит 250 руб. Гораздо дешевле купить модуль, чем собирать драйвер на отдельных компонентах, не говоря о времени и разработке печатной платы.  Перейти в магазин >>

Подключение биполярного двигателя к плате Ардуино.

Я подключил к плате привод FL42STH47-1684. Это биполярный шаговый двигатель с 4 выводами, током фазы 1,68 А и сопротивлением обмоток 1, 65 Ом.

Источник питания у меня напряжением 12 В. Если двигатель подключить непосредственно через ключи, то ток в обмотках будет 12 В / 1,65 А = 7 А. Двигатель просто сгорит. Поэтому я последовательно с каждой обмоткой включил ограничительные резисторы. Схема выглядит так.

  • Биполярный шаговый двигатель как запустить
  • Я использовал резисторы сопротивлением 10 Ом. Ток фазы можно рассчитать по формуле:
  • Iфазы = ( Uпитания – Uключей ) / ( Rограничительный + Rобмотки)
  • Iфазы – ток фазы.
  • Uпитания – напряжение источника питания, у меня 12 В.
  • Uключей – падение напряжения на открытых ключах драйвера. Для L298 это сумма падений на верхнем (Source Saturation Voltage) и нижнем ключах (Sink Saturation Voltage). Из справочных данных определяем, что на ключах драйвера L298N падает 2-2,5 В.
  • Rограничительный – сопротивление ограничительных резисторов. В моей схеме 10 Ом.
  • Rобмотки – сопротивление обмоток двигателя. У двигателя FL42STH47-1684 сопротивление 1,65 Ом.

В результате для моей схемы ток фазы будет:

Iфазы = (12 – 2) / (10 + 1,65) = 0,86 А.

На ограничительных резисторах может выделяться значительная мощность. В моей схеме 0,86 * 0,86 * 10 = 7,4 Вт. Я использовал резисторы мощностью 10 Вт.

Можно подключить двигатель без ограничительных резисторов, снизив напряжение источника питания. Но в схеме с резисторами привод будет вращаться с большей скоростью благодаря тому, что токи фаз нарастают быстрее.

Что касается подключения разных вариантов биполярных двигателей, то они подробно описаны в этой статье. Я просто перечислю их и покажу схемы вариантов.

  1. Двигатель с 4 выводами.
  2. Биполярный шаговый двигатель как запустить
    Самая распространенная схема.
  3. Двигатель с 6 выводами.
  4. Надо помнить, что сопротивление обмоток складываются и для того чтобы обеспечить тот же ток фазы, как для униполярного режима надо удвоить напряжение питания драйвера.
  5. Двигатель с 8 выводами, последовательное соединение обмоток.
  6. Сопротивления обмоток складываются, и требуется в два раза большее напряжение питания.
  7. Двигатель с 8 выводами, параллельное соединение обмоток.

Обмотки включены параллельно. Общее сопротивление в два раза меньше, ток, при том же напряжении питания, в два раза больше ток драйвера. Зато снижается общая индуктивность, а значит, повышается  скорость нарастания тока в обмотках.

  • Проверка работы схемы.
  • Мой вариант схемы в собранном виде выглядит так.

В этом уроке программы писать не будем. Все программы из уроков 28, 29, 31, 32 должны работать без изменений. Только обратите внимание на последовательность подключения управляющих сигналов модуля L298N к выводам платы Ардуино. Выводы фаз A,B,C,D для униполярного двигателя соответствуют управляющим выводам IN1, IN3, IN2, IN4 модуля L298N.

Сначала я загрузил в плату Ардуино программу драйвера с управлением от компьютера по протоколу AT команд и проверил работу с программой верхнего уровня StepMotor. Резидентную программу (для платы Ардуино) и программу верхнего уровня (для компьютера) можно взять из урока 31.

Все работает. Скорость вращения моего привода, включенного по такой схеме,  достигает 150 оборотов в минуту. Униполярный двигатель FL57STH76-1006 в предыдущих уроках вращался со скоростью не более 60 оборотов в минуту.

Увеличение скорости вращения двигателя в 2,5 раза связано, прежде всего, с большей скоростью нарастания токов в обмотках. Происходит это  из-за меньшей индуктивности обмоток и применения схемы с ограничительными резисторами.

Для убедительности я рассчитаю скорость нарастания тока для обоих приводов.

Для двигателя из предыдущих уроков (FL57STH76-1006):

  • индуктивность обмотки 14 мГн;
  • при питании 12В ток в обмотке достигает значения 1 А за время
    T = I * L / U = 1 А  * 14 мГн / 12 В = 1,2 мс.

Для двигателя, который я использовал в этом уроке (FL42STH47-1684):

  • индуктивность обмотки 3,2 мГн;
  • при питании 12В ток в обмотке достигает значения 1 А за время
    T = I * L / U = 1 А  * 3,2 мГн / 12 В = 0,3 мс.

Отсюда и увеличение скорости вращения. Конечно, повлияло еще:

  • увеличение крутящего момента из-за биполярного режима коммутации;
  • другой момент инерции ротора;
  • меньший ток фазы;
  • значительно влияет число шагов двигателя на оборот, но у меня этот параметр одинаков для обоих приводов.

Но если ток не успевает нарастать до нужного значения за время включения фазы, то все остальное уже не так важно.

Дальше я проверил работу следящего электропривода с новым двигателем. Резидентная программа платы Ардуино осталась прежней. А для управления от компьютера я использовал программу Tracker из урока 32.

Следящая система стала работать на много быстрее. Я снял короткий ролик работы следящего электропривода в шаговом и полу шаговом режимах.

  1. Вал двигателя следует за указателем на мониторе компьютера явно быстрее.
  2. В этом уроке я постарался не только рассказать, как работать с униполярными шаговыми двигателями, но и показать влияние скорости нарастания тока в фазных обмотках, на скорость вращения двигателя.

В следующем уроке я расскажу, как работать со STEP/DIR драйверами шаговых двигателей. Представлю библиотеку для управления такими устройствами.

Предыдущий урок     Список уроков     Следующий урок

Шаговые двигатели (подробный разбор 4 типов)

Шаговый двигатель — это бесколлекторный двигатель, ротор которого вращается не плавно, а шагами (дискретно). Полный оборот ротора состоит из нескольких шагов. Меняя форму сигнала, количество импульсов, их длительность и фазовый сдвиг, можно задавать скорость вращения, направление вращения и количество оборотов ротора двигателя.

Шаговые двигатели состоят из ротора (подвижная часть) и статора (неподвижная часть). На статоре устанавливают электромагниты, а части ротора взаимодействующие с электромагнитами выполняются из магнитотвердого (двигатель с постоянными магнитами) или магнитомягкого (реактивный двигатель) материала.

Виды шаговых двигателей по типу ротора:

По типу ротора, шаговые двигатели делятся на: двигатели с постоянными магнитами, реактивные двигатели и гибридные двигатели.

Биполярный шаговый двигатель как запустить

  • Двигатель с постоянными магнитами (ротор из магнитотвердого материала). На роторе установлен один, или несколько, постоянных магнитов. Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на роторе, и количества электромагнитов на статоре. Обычно в одном обороте от 4 до 48 шагов (один шаг от 7,5° до 90°).
  • Реактивный двигатель (ротор из магнитомягкого материала). Еще такие двигатели называют двигателями с переменным магнитным сопротивлением. Ротор не имеет постоянных магнитов, он выполнен из магнитомягкого материала в виде многоконечной звезды. Данные двигатели встречаются редко, так как у них наименьший крутящий момент, по сравнению с остальными, при тех же размерах. Количество полных шагов в одном обороте таких двигателей, зависит от количества зубцов на звезде ротора, и количества электромагнитов на статоре. Обычно в одном обороте от 24 до 72 шагов (один шаг от 5° до 15°.)
  • Гибридный двигатель (совмещает технологии двух предыдущих двигателей). Ротор выполнен из магнитотвердого материала (как у двигателя с постоянными магнитами), но имеет форму многоконечной звезды (как у реактивного двигателя). Количество полных шагов в одном обороте таких двигателей, зависит от количества постоянных магнитов на звезде ротора, и количества электромагнитов на статоре. Количество шагов в одном обороте таких двигателей может доходить до 400 (один шаг от 0,9°).
Читайте также:  Двигатель 2105 как его улучшить

Какой тип шагового двигателя у меня?

Если вручную покрутить ротор отключённого двигателя, то можно заметить, что он движется не плавно, а шагами. После того, как Вы покрутили ротор, замкните все провода двигателя и покрутите ротор повторно. Если ротор крутится также, значит у Вас реактивный двигатель.

Если для вращения ротора требуется прикладывать больше усилий, значит у вас двигатель с постоянными магнитами или гибридный. Отличить двигатель с постоянными магнитами от гибридного можно подсчитав количество шагов в одном обороте. Для этого не обязательно считать все шаги, достаточно примерно понять, их меньше 50 или больше.

Если меньше, значит у Вас двигатель с постоянными магнитами, а если больше, значит у Вас гибридный двигатель.

Виды шаговых двигателей по типу соединения электромагнитов статора:

По типу соединения электромагнитов, шаговые двигатели делятся на: униполярные и биполярные.

Биполярный шаговый двигатель как запустить

На рисунке представлено упрощённое, схематическое, представление обмоток. На самом деле, каждая обмотка состоит из нескольких обмоток электромагнитов, соединённых последовательно или параллельно

  • Биполярный двигатель имеет 4 вывода. Выводы A и A питают обмотку AA, выводы B и B питают обмотку BB. Для включения электромагнита, на выводы обмотки необходимо подать разность потенциалов (два разных уровня), поэтому двигатель называется биполярным. Направление магнитного поля зависит от полярности потенциалов на выводах.
  • Униполярный двигатель имеет 5 выводов. Центральные точки его обмоток соединены между собой и являются общим (пятым) выводом, который, обычно, подключают к GND. Для включения электромагнита, достаточно подать положительный потенциал на один из выводов обмотки, поэтому двигатель называется униполярным. Направление магнитного поля зависит от того, на какой именно вывод обмотки подан положительный потенциал.
  • 6-выводной двигатель имеет ответвление от центральных точек обмоток, но обмотка AA не соединена с обмоткой BB. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения электромагнитов. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток, последовательно или параллельно.

Какой тип шагового двигателя у меня?

Если у Вашего двигателя 4 вывода, значит он биполярный. Если у Вашего двигателя 5 выводов, значит он униполярный. Но если у Вашего двигателя 6 и более выводов, то это не значит что некоторые из них являются центральными выводами катушек электромагнитов.

Дело в том, что есть двигатели, некоторые выводы которых (обычно крайние), электрически замкнуты, так биполярный двигатель может иметь 6 выводов. Точно определить тип соединений, для двигателей с 6 и более выводами, можно только измеряя сопротивление между выводами.

Режимы работы шаговых двигателей:

    Для работы шагового двигателя (вне зависимости от его вида) можно выбрать один из трех режимов работы:

  • Полношаговый режим — ротор поворачивается на 1 шаг за 1 такт.
  • Полушаговый режим — ротор поворачивается на ½ шага за 1 такт.
  • Микрошаговый режим — ротор поворачивается на ¼, ⅛ и т.д. шагов за 1 такт.

Ниже рассмотрены режимы работы, на примере биполярного двигателя с постоянным магнитом и полным шагом 90°.

Полношаговый режим (одна фаза на полный шаг). Номинальные значения шагового двигателя указываются именно для этого режима.

Биполярный шаговый двигатель как запустить

Полношаговый режим (две фазы на полный шаг). Этот режим позволяет увеличить крутящий момент почти в половину от номинального.

Биполярный шаговый двигатель как запустить

Полушаговый режим. Этот режим позволяет увеличить количество шагов в полном обороте в два раза, при незначительном уменьшении крутящего момента.

Биполярный шаговый двигатель как запустить

Микрошаговый режим. Этот режим является наиболее распространённым, он позволяет увеличить количество шагов в полном обороте в четыре раза, благодаря неравномерному распределению токов в обмотках. Снижение токов можно достичь снижением напряжения (как показано на картинке) или подавать полное напряжение через подключаемую внешнюю нагрузку.

Биполярный шаговый двигатель как запустить

Если подавать уровни не «0» — «½» — «1» (как на картинке), а «0» — «¼» — «½» — «¾» — «1», то количество шагов в полном обороте увеличится не в 4 раза, а в 8 раз. Можно увеличить количество шагов в 16, 32, 64 раза и т.д., а если заменить дискретные уровни сигналов на синусоиды, то мотор будет вращаться плавно (без шагов).

Режимы пониженного энергопотребления — доступны только для 8-выводных двигателей. Эти режимы отличаются от обычных тем, что используют только половину фазы (половину электромагнитов). Данные режимы используются редко, так как они значительно снижают крутящий момент двигателя.

Биполярный шаговый двигатель как запустить

Пример работы шаговых двигателей с разными видами роторов:

Биполярный шаговый двигатель как запустить

Подключение шаговых двигателей к Arduino:

Электромоторы нельзя подключать к выводам Arduino напрямую, так как они потребляют значительные токи, шаговые двигатели не являются исключением, поэтому их подключают через драйверы.

Большинство драйверов работают либо с биполярными двигателями, либо с униполярными.

  • Биполярный двигатель можно подключить только к драйверу биполярных двигателей.
  • 6-выводной двигатель можно подключить к любому драйверу. Если не использовать выводы центральных точек обмоток, то двигатель будет биполярным, а если эти выводы соединить и подключить к GND, то двигатель будет униполярным.
  • 8-выводной двигатель является наиболее гибким в плане подключения. Данный двигатель можно не только использовать как биполярный или униполярный, но и самим определять, как соединить электромагниты обмоток внутри двигателя, последовательно или параллельно.
  • Униполярный двигатель, при необходимости, можно подключить и к драйверу биполярного двигателя по простой схеме из нескольких диодов (лучше использовать диоды Шоттки), но такое подключение гарантирует корректность работы униполярного двигателя только в полношаговом режиме.

Драйверы делятся на две категории:

  • Повторяющие форму сигналов. Этот тип драйверов не формирует импульсы, а лишь повторяет их форму для управления двигателем. Формирование импульсов отводится микроконтроллерам (например Arduino). К этой категории относятся такие драйверы как MotorShield на базе чипа L298.
  • Формирующие сигналы управления. Используя данный тип драйверов, можно обойтись без микроконтроллеров, так как для их работы достаточно подать меандр и выбрать режимы работы. К этой категории относятся такие драйверы как например A4988.

Управление шаговым двигателем

   Шаговые двигатели присутствуют в автомобилях, принтерах, компьютерах, стиральных машинах, электробритвах и многих других устройствах из повседневного быта. Однако многие радиолюбители до сих пор не знают, как заставить такой мотор работать и что он вообще из себя представляет. Итак, давайте узнаем, как использовать шаговый двигатель.

Биполярный шаговый двигатель как запустить

   Шаговые двигатели являются частью класса моторов, известных как безщеточные двигатели. Обмотки шагового двигателя являются частью статора.

На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами.

Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Биполярный шаговый двигатель как запустить

Типы шаговых двигателей

  •    Существуют три основных типа шаговых двигателей: переменной индуктивности, двигатели с постоянными магнитами, и гибридные двигатели.
  • Биполярный шаговый двигатель как запустить
  •    Двигатели переменной индуктивности используют только генерируемое магнитное поле на центральном валу, заставляющее вращаться и находиться на одной линии с напряжением электромагнитов.
  •    Двигатели с постоянными магнитами похожи на них, за исключением того, что центральный вал поляризован у северного и южного магнитных полюсов, которые будут соответствующим образом поворачивать его в зависимости от того, какие электромагниты включены.
Читайте также:  Большие обороты двигателя малая мощность

   Гибридный мотор — это сочетание двух предыдущих. У его намагниченного центрального вала имеется два набора зубов для двух магнитных полюсов, которые затем выстраиваются в линию с зубами вдоль электромагнитов. В связи с двойным набором зубов на центральном валу, гибридный двигатель имеет наименьший доступный размер шага и поэтому является одним из наиболее популярных типов шаговых двигателей.

Униполярные и биполярные шаговые двигатели

   Также существует ещё два типа шаговых двигателей: униполярные и биполярные. На фундаментальном уровне, эти два типа работать точно так же; электромагниты включены в последовательном виде, заставляя центральный вал двигателя вращаться.

Биполярный шаговый двигатель как запустить

   Но униполярный шаговый двигатель работает только с положительным напряжением, а биполярный шаговый двигатель имеет два полюса — положительный и отрицательный.

   То есть фактическая разница между этими двумя типами заключается в том, что для однополярных требуется дополнительный провод в середине каждой катушки, что позволит току проходить либо к одному концу катушки, либо другому. Эти два противоположных направления производят две полярности магнитного поля, фактически имитируя как положительные, так и отрицательные напряжения.

Биполярный шаговый двигатель как запустить

   Хотя оба они имеют общий уровень питающих напряжений 5V, биполярный шаговый двигатель будет иметь больший крутящий момент, потому что ток течет через всю катушку, производя более сильное магнитное поле.

С другой стороны, униполярные шаговые двигатели используют только половину длины катушки из-за дополнительного провода в середине катушки, а значит меньший крутящий момент доступен для удержания вала на месте.

Подключение шаговых двигателей

   Разные шаговые двигатели могут иметь разное количество проводов, как правило, 4, 5, 6, или 8. 4-х проводные линии могут поддержать только биполярные шаговые двигатели, поскольку у них нет центрального провода.

Биполярный шаговый двигатель как запустить

   5-ти и 6-ти проводные механизмы могут быть использованы как для однополярного, так и биполярного шагового двигателя, в зависимости от того, используется центральный провод на каждой из катушек или нет. 5-ти проводная конфигурация подразумевает, что центральные провода на два комплекта катушек соединены внутри между собой.

Способы управления шаговыми двигателями

   Есть несколько различных способов управления шаговыми двигателями — полный шаг, полушаг, и микрошаговый. Каждый из этих стилей предлагают различные крутящие моменты, шаги и размеры.

Биполярный шаговый двигатель как запустить

   Полный шаг — такой привод всегда имеет два электромагнита. Для вращения вала, один из электромагнитов выключается и далее электромагнит включен, вызывая вращение вала на 1/4 зуба (по крайней мере для гибридных шаговых двигателей). Этот стиль имеет самый сильный момент вращения, но и самый большой размер шага.

   Полшага. Для вращения центрального вала, первый электромагнит находится под напряжением, как первый шаг, затем второй также под напряжением, а первый все еще работает на второй шаг.

При третьем шаге выключается первый электромагнит и четвертый шаг — поворот на третий электромагнит, а второй электромагнит по-прежнему работает.

Этот метод использует в два раза больше шагов, чем полный шаг, но он также имеет меньший крутящий момент.

   Микрошаговый имеет наименьший размер шага из всех этих стилей. Момент вращения, связанный с этим стилем, зависит от того, как много тока, протекает через катушки в определенное время, но он всегда будет меньше, чем при полном шаге.

Схема подключения шаговых двигателей

   Чтобы управлять шаговым двигателем необходим контроллер. Контроллер — схема, которая подает напряжение к любой из четырех катушек статора. Схемы управления достаточно сложны, по сравнению с обычными электромоторчиками, и имеют много особенностей. Подробно рассматривать тут мы их не будем, а просто приведём фрагмент популярного контроллера на ULN2003A.

Биполярный шаговый двигатель как запустить

   В общем шаговые двигатели являются отличным способом для того, чтобы повернуть что-то в точный размер угла с большим количеством крутящего момента. Другое преимущество их в том, что скорость вращения может быть достигнута почти мгновенно при изменении направления вращения на противоположное.

Originally posted 2018-11-23 11:47:42. Republished by Blog Post Promoter

Управление биполярным шаговым двигателем без использования драйвера

Как-то раз мне захотелось поэксперементировать с шаговыми двигателями. С униполярным двигателем всё очень просто, достаточно полумоста на очень бюджетной микросхеме ULN2003 или ULN2803. А вот с биполярным двигателем всё гораздо сложнее.

Он имеет минимум две обмотки, на каждом конце которых полярность питания должна меняться на противоположную.

 Кто-то скажет «зачем изобретать велосипед? Купи драйвер на L239 и радуйся жизни», может быть это и правильно, но мы же не ищем лёгких путей, да и что-нибудь спаять руки чешутся (а драйверы были куплены, просто они ещё ехали из Китая). Немного покопавшись в интернете, я заинтересовался такой штукой, как H-мост.

Биполярный шаговый двигатель как запустить

Данная схема может подавать на каждый конец обмотки и плюс и минус, в зависимости от того на затвор верхнего или нижнего транзистора плеча моста подать управляющее напряжение.

Так как у биполярного двигателя две обмотки, то нам понадобится два H-моста. Тогда для управления двумя мостами у нас получается восемь управляющих проводов (на затворы каждого транзистора).

Это очень неудобно, потому что, во первых, нужно много проводов цеплять к управляющему микроконтроллеру, а во вторых, если подать управляющий сигнал одновременно на верхний и на нижний транзисторы одного плеча моста, то мы получим короткое замыкание и просто сожжём два транзистора. Поэтому я решил сделать одну хитрость: затворы нижних транзисторов каждого плеча (они у нас коммутируют минус к обмотке мотора) необходимо подключить через инвертор (в данном случае логический элемент «не»), а затворы верхних транзисторов — на вход того же инвертора. Таким образом мы получаем уже четыре управляющих сигнала (A, B, C ,D).

Биполярный шаговый двигатель как запустить

В итоге, если мы подаём на любую линию управления логическую единицу (ТТЛ), то у нас откроется верхний транзистор плеча, а на затвор нижнего пойдёт логический нуль и он будет закрыт.

А если подать на ту же линию логический нуль , то верхний транзистор будет закрыт, а на затвор нижнего будет подана логическая единица (с выхода инвертора), и конец обмотки будет подключён к минусу.

С теорией покончено.

Теперь подключаем нашу схему к arduino (или просто микроконтроллеру): линии A,B,C,D — к любому свободному пину, так же же подключаем минус и плюс 5 вольт от платы контроллера. Сами мосты запитываем от отдельного блока питания (у меня был не стабилизированный на 15 вольт). 

Осталось написать программу управления

Будем управлять двигателем в полушаговом режиме (8 шажков). В моей программе написаны три функции: forward — будет крутить двигатель в одну сторону, backward — в обратную, stope — остановка.

Функции запускаются с помощью терминала путём отправки символов (f,b и s соответственно). Переменная dl служит для управления скоростью вращения двигателя. Так как программа выполняется по кругу, то двигатель вращается постоянно.

По аналогии можно добавить подпрограммы для одного шага или нужного количества шагов.

Внешний вид готового устройства:

Биполярный шаговый двигатель как запустить

Как видно из фотографии, мосты собраны из разных транзисторов (в верхних плечах пары ceb703al и 76129s выпаянные из старых материнок, в нижних плечах irf640  и irf610), так как восемь одинаковых у меня просто не было. Тем не менее схема вполне работоспособна. Так же на фото заметна пара «соплей» — перемычек — как всегда ошибки при рисовании платы.

И в конце статьи — демонстрационное видео работы устройства.

Скачать список элементов (PDF)

Прикрепленные файлы:

  • H-мост.lay6 (70 Кб)
  • Stepper.ino (3 Кб)
Ссылка на основную публикацию
Adblock
detector