Главный двигатель судна схема

Главный двигатель судна схема

Мощность: 60 л.с

Главный двигатель судна схема

Мощность: 50 л.с

Главный двигатель судна схема

Мощность: 40 л.с

Главный двигатель судна схема

Мощность: 30 л.с

Главный двигатель судна схема

Мощность:  20   л.с

Главный двигатель судна схема

Мощность: 13 л.с.

Главный двигатель судна схема

Мощность: 87 л.с

Главный двигатель судна схема Двигатель LDW 502 SD (sail drive)

Мощность: 13 л.с.

Главный двигатель судна схема Двигатель LDW 702 SD (sail drive)

Мощность: 20 л.с.

Мощность: 30 л.с.

Мощность: 40 л.с.

Мощность: 50 л.с.

Мощность: 60 л.с.

Мощность – 4 KVА – 3,2 KW

Мощность – 6 KVА – 5 KW

Мощность – 10 KVА – 8 KW

Мощность – 15 KVА – 12 KW

Мощность – 20 KVА – 16 KW

информация по дизель-генераторам HYUNDAI обновляется Судовые дизель-генераторы HYUNDAI Судовые дизельные двигатели HYUNDAI Судовые дизель-генераторы (от 3,5КВт до 16КВт) Судовые дизельные двигатели (от 13л.с. до 240л.с.) LDW 2204 TSD (sail drive)

Мощность: 84 л.с.

Мощность: 134 л.с.

Мощность: 94 л.с.

Мощность: 68 л.с.

Мощность: 180 л.с.

Мощность: 210 л.с.

Мощность: 283 л.с.

Мощность: 325 л.с.

Мощность: 430 л.с.

Мощность — 73 л.с.

Мощность — 93 л.с.

Мощность — 80 л.с.

Мощность — 130 л.с.

Мощность — 335 л.с.

Мощность — 278 л.с.

Мощность — 247 л.с.

Мощность — 132 л.с.

Двигатель HYUNDAI DD6BR-M2

Мощность — 185 л.с.

Мощность — 500 л.с.

Мощность — 550 л.с.

Мощность — 251 л.с.

Судовые дизельные двигатели HYUNDAI (от 73 до 550л.с.)

§ 19. Конструкции судовых двигателей внутреннего сгорания

Любой двигатель внутреннего сгорания имеет аналогичные по конструкции основные узлы и детали, а также механизмы и системы. Все они могут быть сгруппированы следующим образом (рис.

38): неподвижные детали, образующие остов двигателя — фундаментная рама 1, станина (картер) 2, блок цилиндров 3 и крышка цилиндров 4; подвижные детали, или кривошипно-шатунный механизм,— поршень 9, поршневые кольца 8, поршневой палец 10, шатун 11, коленчатый вал 16, маховик и др.

; механизм газораспределения — впускные и выпускные клапаны 6 с пружинами, детали привода клапанов (толкатель) 7, 12, 13, 14, шестерни 15 и 17 привода распределительного вала и т. д.

; топливоподающая система — топливный бак, фильтры, топливо-подкачивающий насос, топливный насос высокого давления, регуляторы топлива, трубопроводы, форсунки и др.; система смазки и охлаждения двигателей — масляный бак, трубопроводы, фильтры, масляные насосы (приводные и ручные), маслоподкачивающие насосы, охлаждающие водяные насосы и т. д.;

система наддува и продувки свежим воздухом (для двухтактных двигателей) —продувочные насосы, компрессоры, газовые турбины и др.

Главный двигатель судна схема

Кроме этого, двигатель оснащается различными пусковыми и реверсивными устройствами, измерительными приборами и арматурой.

Остов двигателя. Остов двигателя служит для соединения в один жесткий блок всех неподвижных деталей двигателя, для расположения в нем подвижных частей, на нем — всех навешиваемых механизмов и для крепления двигателя к судовому фундаменту.

Основанием двигателя является фундаментная рама.

Она состоит из двух продольных балок коробчатого или двутаврового сечения, на которые устанавливаются обычно стойки и станины, и нескольких поперечных балок специальной формы с расточками для установки рамовых подшипников. Фундаментные рамы современных судовых двигателей изготовляют литыми (чугунными или стальными) или сварными. Они бывают закрытые и открытые, цельные и составные.

Нижняя часть закрытой фундаментной рамы, т. е. поддон, представляет собой одно целое с продольными и поперечными балками. Между поперечными балками располагаются кривошипы коленчатого вала, поэтому пространство между ними и продольными балками называется мотылевым колодцем. В нижней части поперечных балок имеются отверстия для перетекания масла из одного мотылевого колодца в другой.

В целях облегчения обработки, транспортировки и монтажа на судне фундаментные рамы двигателей большой мощности выполняют по длине составными из двух и более частей. Отдельные части пригоняют друг к другу и соединяют болтами. Для двигателей средней мощности фундаментные рамы изготовляют открытыми.

В этом случае поддон изготовляют отдельно из тонкой листовой стали и крепят шпильками к нижней части рамы. Рама становится более легкой, но менее жесткой.

В быстроходных и легких двигателях применяют так называемые картерные рамы, позволяющие устанавливать блок цилиндров непосредственно на раме, в результате чего отпадает необходимость в станинах.

На рис. 39 показан общий вид закрытой фундаментной рамы с уложенным на нее коленчатым валом и с закрепленными крышками рамовых подшипников. В нижней части рамы виден поддон и отверстие для стока отработанного масла. С боков рама имеет по всей длине горизонтальные полки с приливами, в которых находятся отверстия для болтов, соединяющих раму с судовым фундаментом.

Главный двигатель судна схема

Станина двигателя присоединяется к фундаментной раме на болтах. Станины изготовляют цельными и составными, литыми (из чугуна или стали) и сварными.

Для двигателей большой мощности станины выполняют открытого типа в виде отдельно стоящих, соединенных между собой вверху и внизу колонн, которые обычно располагают в плоскости рамовых подшипников и крепят к фундаментной раме.

Такая конструкция значительно увеличивает жесткость остова двигателя и обеспечивает свободный доступ к движущимся деталям и подшипникам. Колонны чаще всего выполняют двутаврового сечения с поперечными ребрами жесткости. Сверху на колонны устанавливают цилиндры двигателя.

Если станина мощного двигателя отлита из чугуна, применяют так называемые анкерные связи — длинные стяжные болты 1, соединяющие цилиндры 2, станину 3 и фундаментную раму 4 в одно целое (рис. 40). Это позволяет уменьшить толщину стенок станины, повысить прочность и жесткость всей конструкции.

Главный двигатель судна схема

В двигателях малой и средней мощности применяют станины закрытого (коробчатого) типа. Такая станина представляет собой цельную отливку в виде коробки, открытой снизу (см. рис. 38).

Полость, образуемая станиной 2 и фундаментной рамой/, носит название картерного пространства, а сама станина, присоединенная на болтах к фундаментной раме, называется картером. К верхней части картера крепят рабочие цилиндры 3 двигателя.

Такая конструкция остова двигателя увеличивает его продольную жесткость, позволяет иметь отдельные, не собранные в блок цилиндры и облегчает фундаментную раму.

В последнее время в двигателях средней мощности широко применяют сварные блочные конструкции фундаментных рам и станин, которые обладают значительной жесткостью и меньшим весом по сравнению с литыми чугунными станинами.

Рабочие цилиндры современных двигателей изготовляют или каждый в отдельности, или чаще всего в виде блочной конструкции.

Преимущество блочной отливки цилиндров в том, что она повышает жесткость конструкции, уменьшает вес и габарит двигателя, снижает стоимость изготовления цилиндров.

Дизели малой и средней мощности имеют обычно блочную конструкцию цилиндров, и только двухтактные (изредка — четырехтактные) двигатели большой мощности — отдельные цилиндры.

Конструкция отдельного цилиндра четырехтактного двигателя показана на рис. 41. Цилиндр состоит из наружной рубашки 1 (цилиндра) и рабочей втулки 2, запрессованной в цилиндр и опирающейся буртиком 9 на кольцевой выступ, имеющийся в верхней части наружного цилиндра.

Между наружной рубашкой и втулкой образуется полость — зарубашечное пространство, куда поступает непрерывно циркулирующая охлаждающая вода.

От охлаждающего насоса через отверстие 3 вода вначале попадает в нижнюю часть зарубашечного пространства, а затем поднимается вверх и переходит в полость охлаждения крышки цилиндра через отверстие 8- Внутренняя поверхность рабочей втулки при работе двигателя смазывается.

Смазка осуществляется при помощи штуцеров, ввернутых в цилиндр, через которые масло под давлением попадает на внутреннюю поверхность втулки. Вторым способом смазки является смазка разбрызгиванием (для быстроходных двигателей), когда масло фонтанирует из торцевых зазоров подшипников коленчатого вала и разносится при движении поршня по всей рабочей поверхности втулки.

Главный двигатель судна схема

Наружная рубашка имеет фланец 4, которым цилиндр крепится к станине двигателя. В нижней части рубашки расположен поясок 5 для фиксирования положения втулки.

В пояске выполняют кольцевую выточку, в которую укладывается резиновое кольцо 6 круглого сечения, что обеспечивает плотность соединения, т. е. предотвращает проникновение охлаждающей воды из зарубашечного пространства в картер двигателя.

Для  осмотра и очистки зарубашечного пространства в наружной рубашке предусмотрены горловины 7, плотно закрываемые крышками.

Конструктивные особенности рабочих цилиндров двухтактных двигателей обусловлены системой продувки и расположением продувочных и выпускных окон.

В отличие от цилиндров четырехтактных двигателей в стенках этих рабочих цилиндров расположены каналы для подвода продувочного воздуха и удаления отработавших газов.

Это обстоятельство приводит к необходимости уплотнения между вставной втулкой и рубашкой не только в ее нижней части, но и в районе продувочных и выпускных окон. В канавки, прилегающие к окнам, закладывают кольца из красной меди, а в остальные — резиновые кольца.

В быстроходных дизелях для уменьшения их веса рабочую втулку изготовляют заодно с крышкой цилиндра из легированной кованой стали, а рубашку из листовой нержавеющей стали приваривают к втулке.

Применение отдельных вставных втулок благоприятно отражается на работе и ремонте двигателя: уменьшаются тепловые напряжения в металле цилиндра и втулки, так как последняя может удлиняться при нагреве; достигается возможность изготовления втулок из более прочного и износоустойчивого материала, чем стенки наружного цилиндра.

Основное преимущество — возможность замены втулки при износе ее рабочей поверхности, что упрощает изготовление и ремонт цилиндров.

Крышка, или головка, цилиндра — наиболее ответственная и сложная по конфигурации деталь остова двигателя. Она крепится к верхнему фланцу цилиндра при помощи шпилек. Для обеспечения плотности соединения в кольцевую выточку 10 буртика 9 (см. рис. 41) втулки рабочего цилиндра закладывают красно-медную или медно-асбестовую прокладку, которая обжимается выступающим буртиком крышки.

По геометрической форме крышка цилиндра напоминает пустотелую круглую или прямоугольную коробку, имеющую два днища и боковые стенки. Нижнее днище находится в наиболее тяжелых условиях работы, оно подвержено высоким давлениям и температуре газов, образующихся в цилиндре.

В полости между верхним и нижним днищами циркулирует охлаждающая вода, поступающая из зарубашечного пространства цилиндра.

Таким образом, крышка является не только наиболее ответственной, но и наиболее нагруженной деталью остова двигателя, так как в ней возникают как механические, так и тепловые напряжения, вызываемые неравномерным нагревом ее стенок.

В крышке цилиндра четырехтактного двигателя (рис. 42) предусмотрены отверстия 1 для размещения двух впускных клапанов, в центре — отверстие 3 для форсунки и сбоку от него — отверстие 2 для пускового клапана.

Кроме того, крышка имеет вертикальный индикаторный канал 4, а внизу — горизонтальную перегородку 5, которая служит для улучшения охлаждения нижнего днища.

Охлаждающая вода омывает вначале нижние днища, а затем по мере нагревания по специальным переходам в горизонтальной перегородке перетекает в верхнюю часть плоскости крышки. Крышка цилиндра двухтактного двигателя отличается более простым устройством.

Главный двигатель судна схема

Вследствие тяжелых условий работы цилиндровых крышек материалы, из которых они изготовляются, должны отличаться высокой механической прочностью, жаростойкостью, хорошими литейными свойствами и незначительным коэффициентом линейного расширения.

  • Кривошипно-шатунный механизм
  • Механизм газораспределения
Читайте также:  Слабые стороны и недочеты hyundai elantra 5 (md)

Типы судовых двигателей

В зависимости от назначения в народном хозяйстве применяют различные двигатели с теми или иными особенностями.

По этому признаку различают судовые двигатели, предназначенные для установки на судах или других плавсредствах.

Такие двигатели должны быть оборудованы в соответствии с требованиями Речного Регистра или Регистра России для привода судовых движителей или вспомогательных агрегатов.

Устанавливаемые на судах и плавсредствах двигатели делятся на главные и вспомогательные. Главным называют двигатель, являющийся источником энергии для выполнения основной задачи судна: у транспортных судов—приведение в действие судового, движителя, на судах и плавсредствах технического флота — перемещение грунта (у земснарядов), или перекачивание нефтепродуктов (у нефтестанций) и др.

Остальные судовые двигатели относят к вспомогательным. Они предназначены для привода электрогенераторов судовых электростанций, лебедок, компрессоров, насосов и других механизмов.

Устанавливаемые на тепловозах двигатели называют тепловозными.

Промышленные двигатели предназначены для использования на наземных стационарных или передвижных установках: электростанциях, насосно-перекачивающих или компрессорных станциях, холодильных установках рефрижераторов и т. д.

Широко распространены транспортные двигатели — автомобильные и тракторные. Измененные и приспособленные для работы в других условиях (например, в качестве судовых) такие двигатели получили название конверсионных.

По мощности

  • Согласно классификации Центрального научно-исследовательского дизельного института (ЦНИДИ) двигатели по агрегатной мощности делят на 4 группы: менее 74 кВт — маломощные; 74—736 —
  • средней мощности; более 736—7360— мощные; более 7360 кВт — сверхмощные.
  • Мощность главных судовых двигателей серийных судов доходит до 1600 кВт.

По способу осуществления рабочего цикла. В зависимости от того за сколько ходов поршня происходит рабочий процесс в цилиндре, различают четырех и двухтактные двигатели Последние могут быть с прямоточной продувкой, когда чистку и заполнение цилиндра осуществляет осевой поток воздуха.

Впускные 1 и выпускные 2 органы расположены на противоположных концах цилиндра.

В некоторых двухтактных двигателях предусмотрена поперечная или контурная продувка. В этом случае продувочные потоки воздуха движутся в цилиндре по его контуру (рис. 7), совершая поворот у в. м. т. Продувочные 1 и выпускные 2 окна расположены в нижней части цилиндра на диаметрально противоположных его сторонах (рис. 7,а).

Двухтактный двигатель, у которого продувочные потоки воздуха сначала омывают днище поршня 3 (рис. 7,6), а затем, описав петлю, по контуру цилиндра направляются к выпускным окнам 2, расположенным над продувочными 1 на одной и той же стороне цилиндра, имеет петлевую продувку.

По характеру сгорания топлива

Как в двухтактных, так и в четырехтактных дизелях, работающих по циклу со смешанным сгоранием топлива, часть топлива сгорает при постоянном объеме (см. рис. 2, линия cz'), часть — при постоянном давлении (линия zz'). Существует цикл и со сгоранием топлива при постоянном объеме, когда все оно сгорает в момент нахождения поршня в в. м. т.

На рис. 8 изображены совмещенные диаграммы разных циклов. Следует оговориться, что для большей наглядности на диаграмме рис.

2 были не в соответствии с масштабом ординат раздвинуты линии всасывания а'а и выпуска r'r. В действительности разность давлений  выпуска и впуска очень мала и в масштабе ординат, принятом на рис.

2, эти линии практически сливаются в одну вместе с линией ро, как, например, на рис. 8.

Нормальная диаграмма цикла со сгоранием при постоянном объеме (изохорный цикл) показана на рис. 8 сплошными линиями. На этой диаграмме r1a — линия всасывания; — линия сжатия; C1Z1 — линия сгорания; Z1b,— линия расширения; Ьа — линия свободного выпуска; аr1 слившаяся с r1а,—линия принудительного выпуска.

Коэффициент полезного действия (к. п. д) рабочего цикла теплового двигателя зависит от разности максимальной и минимальной температур рабочего тела (газа, пара) чем она больше, тем выше к. п. д.

В ДВС разность температур рабочего тела является функцией степени сжатия. Если сравнить циклы с одинаковыми степенями сжатия, то к. п. д. двигателей с изохорным циклом будет выше, чем к. п.

д двигателей со смешанным сгоранием

Положительное влияние повышения степени сжатия на к. п. д. заставляет стремиться к этому повышению. В двигателях с изохорным циклом такой путь труден, ибо связан со значительным ростом максимального давления цикла

Диаграмма r1ac1z1ba1r на рис. 8 построена для степени сжатия e1 = 7. Здесь же построены диаграммы r2ac2z2ba2r (тонкие линии) изохорного и r2ac2z3  z3bar(штрихи) смешанного циклов, соответствующие степени сжатия e2=14.

  1. Главный двигатель судна схема
  2. Рис. 6 Конструктивные схемы прямоточной продувки двухтактных двигателей
  3. Главный двигатель судна схема

Рис. 7 Типы поперечных и контурных продувок двухтактных двигателей

Главный двигатель судна схема

Рис. 8 Совмещенные диаграммы изохорного и смешанного циклов двигателей

 Как видно из рисунка, при той же степени сжатия e2 максимальное давление рzз смешанного цикла будет ниже, чем давление рz2 изохорного. Значит, при смешанном цикле нагрузки на детали будут ниже, чем при изохорном, поэтому детали могут быть меньших размеров, а изготовлять их можно из более дешевых материалов.

Если сравнить смешанный и изохорный циклы при одинаковом их максимальном давлении (а в этом случае степень сжатия у изохорного будет меньше), то к п д двигателей смешанного цикла окажется выше. А отсюда и применимость циклов: двигатели низкого сжатия, например автомобильные, работают по изохорному циклу, двигатели высокого сжатия (дизели) — по смешанному.

Распространенность менее экономичных, чем дизели, двигателей низкого сжатия можно объяснить их надежностью, относительно простой конструкцией и меньшей шумностью в работе.

По способу воздухоснабжения цилиндров

  • В зависимости от способа заполнения цилиндров воздухом — без повышения давления или под давлением выше атмосферного — различают соответственно двигатели без наддува и с наддувом При наддуве создается повышенное давление воздуха в конце процесса наполнения, в результате чего в том же объеме цилиндра будет заключена большая масса воздуха, что позволит сжечь большее количество топлива, впрыскиваемого за цикл, а значит, увеличить работу и мощность двигателя.
  • Главный двигатель судна схема
  • Рис. 9 Схемы наддува двигателей

Для создания наддува четырехтактные двигатели оборудуют компрессорами, подающими к впускным клапанам воздух под давлением выше атмосферного у двухтактных двигателей с наддувом продувочный воздух поступает под более высоким давлением, чем у двигателей без наддува. Для этого, кроме продувочного насоса, двигатели снабжают дополнительным компрессором, причем иногда не одним.

Компрессор 4 (рис. 9, а), вырабатывающий наддувочный воздух, может быть приведен в движение от коленчатого вала с помощью повышающей передачи 5 Такой наддув называют механическим Нагнетаемый компрессором 4 воздух поступает по трубе 3 в наддувочный коллектор 2, а затем к впускным клапанам 1 цилиндров.

На механический наддув затрачивается часть полезной мощности двигателя и в результате снижает его экономичность, что особенно заметно при высоких давлениях наддува. Поэтому механический наддув широко не применяют На речном флоте встречается лишь один тип двигателя с механическим наддувом — двигатель М 400

Некоторые двигатели изготовляют с так называемым посторонним наддувом, когда наддувочный воздух предварительно сжимает компрессор, приводимый от независимого источника энергии. Наиболее часто применяют двигатели с газотурбинным наддувом.

В этом случае выпускные газы из цилиндров 1 (рис 9,6), поступающие в коллектор 2, а из него в корпус 3 газовой турбины, заставляют вращаться ротор 4, на одном валу с которым насажено рабочее колесо 5 компрессора.

Засасываемый из атмосферы воздух поступает под давлением в наддувочный коллектор 6, а оттуда в цилиндры при открытии впускных клапанов 7 При газотурбинном наддуве утилизируют энергию выпускных газов, которая в двигателях без наддува искусственно погашается в глушителе Правда, с введением турбины повышается сопротивление выпуску, т е. увеличивается затрата энергии на такт выпуска, но она меньше, чем при механическом наддуве, примерно в 3 раза. Поэтому газотурбинный наддув повышает экономичность работы двигателя.

В свою очередь различают газотурбинный наддув при постоянном давлении, когда выпускные газы из всех цилиндров поступают в общий выпускной коллектор, где вследствие большого объема выпускного коллектора давление газов перед турбиной близко к постоянному, а оттуда на лопатки газовой турбины, и импульсный.

Импульсный газотурбинный наддув применяют с целью лучшего использования энергии выпускных газов, для чего один или несколько выпускных трубопроводов с относительно малой площадью поперечного сечения соединяют цилиндры с неперекрывающимися фазами выпуска, в результате чего выпускные газы непрерывно поступают в турбину При импульсном наддуве используют и преобразователи импульсов.

В этом случае выпускные газы подводят к турбине через преобразователь импульсов, состоящий из ряда сужающихся сопел и смесителей, предназначенных для выравнивания давления и расхода выпускных газов. В двухтактных малогабаритных двигателях с импульсным наддувом обеспечивается постоянный газообмен в цилиндрах на всех режимах при одноступенчатом сжатии воздуха в турбокомпрессоре.

В двухтактных двигателях с контурными и прямоточными продувками применяют комбинированный наддув.

В зависимости от способа подключения приводных компрессоров или турбокомпрессоров, различают три схемы наддува, с последовательным, с паралелльным и с последовательно-параллельным подключением тех или других компрессоровю.

Кроме перечисленных разновидностей газотурбинного наддува возможен также динамический, или волновой, наддув, при котором инерция и колебательное движение потоков газа в процессах впуска и выпуска способствуют улучшению наполнения цилиндров.

Иногда двигатель оборудуют устройством — волновым обменником, в котором давление выпускных газов используют непосредственно для сжатия наддувочного воздуха (наддув тип а «Компрекс»).

По роду применяемого топлива. Большинство двигателей работает на жидком топливе. Двигатели жидкого топлива делят на 2группы светлого (бензины, керосины и др.) и темного (дизельное, моторное, газотурбинное и др ) топлива.

Двигатели, которые без конструктивных изменений могут работать на жидком топливе различных фракционных составов, называют многотопливными.

Кроме них, существуют двухтопливные двигатели, которые могут работать на жидком или газообразном топливе и во время работы по необходимости их можно переводить с топлива одного вида на другой.

На наземных установках распространены газовые и газожидкостные двигатели. В первых используют газообразное топливо, которое воспламеняется принудительно электрической искрой или самовоспламеняется от сжатия, как у дизелей, работающих на жидком топливе. Достоинство газовых двигателей — малая токсичность выпускных газов.

Газожидкостные двигатели работают с воспламенением от сжатия. Основное топливо — газообразное, а жидкое, в небольших количествах впрыскиваемое в цилиндр при подходе поршня к в.м.т., самовоспламеняется и поджигает основное газообразное топливо.

По способу воспламенения

В двигателях с внутренним смесеобразованием самовоспламенение смеси топлива и воздуха осуществляется благодаря высокой температуре в цилиндре, возникшей только в результате его сжатия В двигателях низкого сжатия самовоспламенение невозможно, поэтому в них предусмотрено принудительное зажигание топлива электрической искрой. Эти двигатели называют двигателями с искровым зажиганием в отличие от дизелей, называемых двигатели с самовоспламенением от сжатия.

Читайте также:  Бош макс 5 не работает двигатель

Двигателестроительные заводы выпускают конвертируемые двигатели. Путем некоторых конструктивных изменений их можно преобразовать в двигатели с искровым зажиганием или в дизели.

По способу смесеобразования

В двигателях газовых и светлого жидкого топлива, как правило, предусматривают внешнее смесеобразование, т. е. в цилиндр поступает готовая горючая смесь топлива с воздухом. Эта смесь образуется в особом смесителе.

При использовании жидкого топлива смеситель называют карбюратором.

В двигателях с внутренним смесеобразованием воздух и топливо поступают в цилиндр раздельно, смешение их происходит внутри цилиндра. Организовать хорошее перемешивание топлива с воздухом при внутреннем смесеобразовании значительно труднее, чем при внешнем.

Создать двигатели с внешним смесеобразованием для темного топлива не удается: если легкое светлое топливо в процессе смешения с воздухом испаряется, то темное остается в жидкой фазе и выпадает из смеси по пути в цилиндр, оседая на стенках коллекторов и патрубков.

У дизелей с внутренним смесеобразованием распыливание топлива может быть объемное, когда большая часть впрыскиваемого топлива распределяется в воздушном заряде, занимающем объем камеры сгорания; пленочное — большая часть впрыскиваемого топлива направляется на стенки камеры сгорания, образуя на них тонкую пленку, и лишь незначительная часть распыливается и перемешивается с воздушным зарядом за период впрыскивания и объемнопленочное, когда одна часть впрыскиваемого топлива распределяется в объеме воздушного заряда, а другая направляется на стенки камеры сгорания, образуя на них пленку.

По типу камер сгорания

Формы камер сгорания, образованные поверхностями днищ поршней и крышек (головок) цилиндров, используемые для смесеобразования, бывают различными.

Образцом двигателя с камерой сгорания в поршне является дизель 6ЧСП 18/22, в котором для смесеобразования и сгорания используется камера в головке поршня, соединяющаяся с надпоршневым пространством горловиной с проходным сечением, обеспечивающим перетекание воздуха с малыми скоростями и небольшими перепадами давлений.

В такой конструкции организованное вихреобразование обеспечивается за счет радиально-направленных потоков воздуха, перетекающих из кольцевого надпоршневого пространства внутрь камеры, либо за счет тангенциально направленных потоков, образующихся во входных каналах головки.

Если камера сгорания размещена в головке поршня и в крышке (головке) цилиндра или между днищами поршней, такой двигатель называют двигателем с открытой камерой сгорания и непосредственным впрыскиванием топлива.

Для создания однородной топливновоздушной смеси при вихрекамерном спосрбе смесеобразования используют принцип вихревого движения воздуха в надпоршневом пространстве.

При пониженном давлении впрыскивания топлива и коэффициенте избытка воздуха это позволяет добиться более полного сгорания топлива в двигателях с небольшими диаметрами цилиндров (4Ч10,5/13).

В вихрекамерном двигателе смесеобразование и сгорание топлива в основном происходят в вихревой камере.

В некоторых конструкциях высокооборотных дизелей предусмотрен предкамерный способ смесеобразования.

В этом случае для смесеобразования используют перепад давлений, возникающий в результате предварительного частичного сгорания топлива, вводимого в предкамеру.

При таком способе смесеобразования камера сгорания состоит из предкамеры, расположенной в крышке цилиндра, и основной камеры, заключенной между днищами поршня и крышки.

У воздушно-камерных двигателей для смесеобразования используют струю воздуха, создаваемую в дополнительной части — воздушной камере во время процесса сжатия. Во время процесса расширения воздух из камеры вытекает. Распыливание и смесеобразование происходят вне воздушной камеры.

По частоте вращения коленчатого вала

  1. Согласно ГОСТ 10448—80 двигатели делят на 5 групп:
  2. I — рабочий режим при эксплуатации не контролируется, частота вращения коленчатого вала более 1800 мин-1;
  3. II—двигатели без наддува, частота вращения коленчатого вала 1500 мин-1 и более;
  4. III—двигатели с наддувом, частота вращения коленчатого вала 1500 мин-1 и более;
  5. IV — частота вращения от 250 мин-1 до 1500 мин-1;
  6. V — частота вращения менее 250 мин-1.

По быстроходности

  • Тепловые и динамические напряжения в двигателе зависят от средней скорости поршня, которая является функцией частоты вращения коленчатого вала и хода поршня. Так как за один оборот вала поршень делает 2 хода, то можно записать
  • cm = 2sn/60,
  • где сm —- средняя скорость поршня, м/с; s — ход поршня, м,
  • n — частота вращения коленчатого вала, мин-1
  • После сокращений
  • сm = sn/30

По скорости поршня

  1. Двигатели по значению средней скорости поршня Делят на 3 группы:
  2. сm

Системы ДАУ главными двигателями

Системы ДАУ главными двигателями относятся к числу основных систем автоматизации.

В состав дизельной установки входят сам дизель и системы, обеспечивающие его функционирование, — системы пуска, реверса, смазки, охлаждения, топливоподачи, наддува, управления.

Главный двигатель судна схемаБезаварийная и экономичная работа дизельной установки возможна при условии автоматического контроля и управления основными рабочими параметрами дизеля.

К рабочим параметрам, по которым осуществляется автоматическое регулирование, защита и сигнализация, относятся: температура атмосферного воздуха Т0, наддувочного воздуха во впускном коллекторе Тк, выпускных газов по цилиндрам и средняя за газовой турбиной Tг, пресной воды на входе Oв1 и на выходе Ов2, смазочного масла на входе Ом1 и на выходе Ом2; давление атмосферного воздуха р0, воздуха во впускном коллекторе рк, смазочного масла рм, газов в выпускном коллекторе рг, охлаждающей воды рв; крутящий момент М и частота вращения n коленчатого вала. На рис. 1 представлена обобщенная схема автоматического контроля и регулирования дизеля.

Главный двигатель судна схема

Рис. 1. Обобщенная схема автоматического контроля и регулирования дизеля: 

1, 22 — насосы забортной и пресной воды;
2, 13, 21 — холодильники пресной воды наддувочного воздуха и масла; 3, 20 — регуляторы температуры пресной воды и смазочного масла; 4 — регулятор давления масла в системе смазки; 5, 19 — нагнетательный и откачивающий масляные насосы; 6 — главная масляная магистраль; 7 — полости охлаждения; 8, 17 — выпускной и впускной коллекторы; 9 — кулачковые валы механизма газораспределения; 10, 11 — газовая турбина и компрессор турбонагнетателя (первая ступень наддува); 12 — автомат изменения угла заклинивания кулачковых валов; 14 — регулятор частоты вращения коленчатого вала; 15 — нагнетатель с механическим приводом (вторая ступень наддува); 16 — топливный насос высокого давления; 18 — коленчатый вал

Контроль за температурой и давлением осуществляется через соответствующие датчики. Для управления величинами крутящего момента и частоты вращения коленчатого вала служит общий регулирующий орган — топливодозирующая аппаратура дизеля. Причем в установившихся режимах работы регулятор частоты вращения поддерживает заданный скоростной режим, изменяя подачу топлива на цикл в соответствии с изменением нагрузки на дизель. Несмотря на взаимное влияние основных рабочих параметров, большая инерционность дизеля по отношению к взаимосвязанным параметрам позволяет создавать системы их несвязанного регулирования. Системы автоматизированного управления дизельными установками обеспечивают автоматическое выполнение как минимум следующих операций: пуск, вывод на заданный скоростной режим, остановку, реверс. В общем виде структура системы может быть представлена схемой, показанной на рис. 2.
Главный двигатель судна схема

Рис. 2. Обобщенная структурная схема системы ДАУ главным двигателем

В состав системы входят два поста дистанционного управления: ПДУ1— в ЦПУ машинного отделения; ПДУ2 — в рулевой рубке. В ПДУ1 размещена аппаратура дистанционного контроля рабочих параметров и состояния механизмов, систем и устройств, а также предусматривается возможность подачи всех команд. В ПДУ2 размещены аппаратура сигнализации только о состоянии основных механизмов и устройств, приборы контроля рабочих параметров, определяющие режим движения судна (частоту вращения гребного вала) и командные органы для изменения режима движения судна.

В блоке логики вырабатываются командные сигналы на базе анализа сигналов, поступающих с ПДУ, систем судовой автоматики и различных датчиков, контролирующих состояние объекта управления (дизеля).

Командные сигналы от блока логики после усиления поступают в цепи управления работой исполнительных двигателей, воздействующих на регулирующие органы.

В блоке логики размещают ряд субблоков, каждый из которых обеспечивает только одну операцию управления, согласно заложенной в нем программе.

Для построения функциональных устройств в системах ДАУ применяют: в устройствах логики — пневматические и электронные элементы; исполнительные двигатели — электрические, гидравлические, пневматические; в цепях управления — электрические и пневматические элементы; в системах сигнализации — электрические элементы.

Отечественная система ДАУ ДКРН, предназначенная для дистанционного автоматизированного управления дизелями 5ДКРН 50/110 и 6ДКРН 74/160, отвечает требованиям Регистра и выполняет следующие операции: управление главным двигателем с любого из двух дистанционных постов управления (ЦПУ и рулевой рубки); пуск двигателя по программе; реверс двигателя при подаче контрвоздуха по двум переключаемым программам (нормального и экстренного реверса); исполнение команд управления двигателем по положению топливорегулирующей рукоятки; прекращение подачи топлива в двигатель при падении давления масла ниже 0,8 кгс/см2; прохождение зоны критической частоты вращения; прекращение подачи пускового воздуха и топлива, если при пуске двигатель в течение 5—7 с не достигнет минимально устойчивой частоты вращения повторных пусков при включении программы экстренного реверса; постепенный вывод двигателя на режим полного хода в течение 2 ч; сохранение заданного режима работы двигателя при исчезновении пневмо- и электропитания; защиту двигателя от опрокидывания (самопроизвольный запуск дизеля в направлении, противоположном заданному); контроль правильности функционирования блоков системы.

Каждая операция управления выполняется по программе, заложенной в соответствующем субблоке блока логики. Информация о состоянии дизеля и органов управления, необходимая для реализации программы управления, вырабатывается основными датчиками: положения рукоятки реверса, положения пускотопливной рукоятки, положения распределительных валов, частоты вращения и направления вращения коленчатого вала. Для автоматического управления автономными вспомогательными механизмами, обслуживающими главный дизель и дизель- генераторы, служит система «Торнадо».

Системы ДАУ классифицируют по следующим признакам:

  • по рабочей среде — электропневматические, электронно-пневматические; реже — пневмоэлектрические, пневматические, механические;
  • по принципу включения — подключаемые параллельно или последовательно к системе местного управления;
  • по совмещению с машинным телеграфом — совмещаемые и несовмещаемые;
  • по связи с дизелем — навешенные, универсальные и встроенные;
  • по объему выполняемых функций — гибкие (универсальные) и негибкие (встроенные).

К системе ДАУ предъявляют следующие основные требования: она должна быть электропневматической или электронно-пневматической, с логической частью — на микроэлектронике; должна подключаться параллельно системам местного управления, совмещаться с машинным телеграфом; должна быть универсальной, повторять блокирование систем местного управления, время переключения от системы ДАУ на местное управления не должно превышать 10 с; статическая ошибка системы ДАУ не должна превышать ±1,5% номинальной частоты вращения.

На судах отечественного флота применяют следующие типы систем ДАУ: FAHM (фирма АСЕА, Швеция); BMS = 930 (фирма STL, Дания); ZSPN (фирма «Цегельски», Польша) и др.

Читайте также:  Высокая температура двигателя остановитесь форд

Схемы устройства и принцип действия

Двигателем внутреннего сгорания называется тепловой двига­тель поршневого типа, в котором химическая энергия топлива пре­образуется в тепловую непосредственно внутри рабочего ци­линдра.

В результате химической реакции топлива с кислородом воздуха образуются газообразные продукты сгорания с высокими давлением и температурой, которые являются рабочим телом дви­гателя. Продукты сгорания оказывают давление на поршень и вы­зывают его перемещение.

Возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма превра­щается во вращательное движение коленчатого вала.

Двигатели внутреннего сгорания работают по одному из трех циклов: изохорному (цикл Отто), изобарному (цикл Дизеля) и смешанному (цикл Тринклера), различающихся характером про­текания процесса сообщения тепла рабочему телу. В смешанном цикле часть тепла сообщается при постоянном объеме, а осталь­ная часть при постоянном давлении. Отвод тепла во всех циклах совершается по изохоре.

Совокупность последовательных и периодически повторяю­щихся процессов, необходимых для движения поршня — наполне­ние цилиндра, сжатие, сгорание с последующим расширением газов и очистка цилиндра от продуктов сгорания — называется рабочим циклом двигателя. Часть цикла, проходящая за один ход поршня, называется тактом.

Двигатели внутреннего сгорания делятся на четырехтактные и двухтактные; в четырехтактных двигателях рабочий цикл совер­шается за четыре хода поршня, а в двухтактных — за два.

Судовые двигатели внутреннего сгорания в основном работают по смешанному циклу. Крайние предельные положения поршня в цилиндре называются соответственно верхней и нижней мерт­выми точками (в. м. т., н. м. т.).

Расстояние по оси цилиндра, проходимое поршнем от одного до другого крайнего положения, называется ходом поршня S (рис. 125). Объем, описываемый поршнем при его движении между в. м. т. и н. м. т., называется рабочим объемом цилиндра Vs. Объем цилиндра над поршнем, когда последний находится в н. м. т.

, называется объемом камеры сжатия Vс. Объем цилиндра при положении поршня в н. м. т. на­зывается полным объемом цилиндра Vа : Va= Vс + Vs.

Отношение полного объема цилиндра к объему камеры сжатия называется степенью сжатия ? = Va / Vc.

Величина степени сжатия зависит от типа двигателя. Для су­довых дизелей степень сжатия равна 12—18. Главными конструк­тивными характеристиками двига­теля являются диаметр цилиндра, ход поршня, число цилиндров и га­баритные размеры.

Четырехтактный двигатель.

Главный двигатель судна схема

На рис. 125 показана схема устройства четырехтактного дизеля. Фунда­ментная рама 15 дизеля покоится на судовом фундаменте 1. Блок ци­линдров 11 закрепляется на станине двигателя 14. Поршень 9 под дей­ствием газов совершает возвратно-поступательное движение по зерка­лу цилиндровой втулки 10 и с по­мощью шатуна 13 вращает коленча­тый вал 2.

Верхняя головка шатуна с помощью поршневого пальца 3 соединена с поршнем, а нижняя ох­ватывает мотылевую шейку колен­чатого вала. В крышке 7 цилиндра размещены впускной клапан 4, вы­пускной клапан 8 и топливная фор­сунка 6. Впускной и выпускной клапаны приводятся в действие через систему штанг и рычагов 5 от кулачных шайб распредели­тельных валов 12.

Последние получают вращение от коленчатого вала.

Рабочий цикл в четырехтактном двигателе происходит за два оборота коленчатого вала — за четыре хода (такта) поршня. Из четырех ходов (тактов) три хода (такта) являются подготови­тельными, а один рабочим. Каждый такт носит название основ­ного процесса, происходящего во время данного такта.

Главный двигатель судна схема

Первый такт — впуск. При движении поршня вниз (рис. 126) над поршнем в цилиндре создается разрежение, и через принуди­тельно открытый впускной клапан а атмосферный воздух запол­няет цилиндр.

Для лучшего заполнения цилиндра свежим заря­дом воздуха впускной клапан а открывается несколько раньше, чем поршень достигнет в. м. т.—точка 1; имеет место предваре­ние впуска (15—30° по углу поворота коленчатого вала). Закан­чивается впуск воздуха в цилиндр в точке 2.

Впускной клапан а закрывается с углом запаздывания 10—30° после н. м. т. возможность использовать инерцию входящего с большой ско­ростью воздуха, что приводит к более полной зарядке цилиндра.

Продолжительность впуска соответствует углу поворота коленча­того вала на 220—250° и на рисунке показана заштрихованным углом 1—2, а па диаграмме р—? — линией впуска 1—2.

Второй такт — сжатие. С момента закрытия впускного кла­пана а (точка 2) при движении поршня вверх начинается сжатие. Объем уменьшается, температура и давление воздуха увеличи­ваются. Продолжительность сжатия составляет угол 140—160° по­ворота коленчатого вала и заканчивается в точке 3.

Давление в конце сжатия достигает 3—4,5 Мн/м2, а температура 800—1100° К. Высокая температура заряда воздуха обеспечивает самовоспламенение топлива. В конце хода сжатия, когда поршень .немного не дошел до в. м. т. (точка 3), производится впрыск топ­лива через форсунку б.

Опережение подачи топлива (угол пред­варения 10—30°) дает возможность к приходу поршня в в. м. т. подготовить рабочую смесь к самовоспламенению.

Третий такт — рабочий ход. Происходит горение топлива и рас­ширение продуктов сгорания. Продолжительность сгорания топ­лива составляет 40—60° поворота коленчатого вала (процесс 3—4 на рисунке).

В конце горения внутренняя энергия газов увеличи­вается, давление газов достигает значительной величины 5—8 Мн/м2, а температура 1500—2000° К. Точка 4 — начало рас­ширения газов. Под давлением газов поршень движется вниз, со­вершая полезную механическую работу.

В конце расширения (угол опережения 20—40° до н. м. т.) — точка 5 — открывается выпускной клапан в, давление в цилиндре резко падает и по дости­жении поршнем н. м. т. оказывается равным 0,1—0,11 Мн/м2, а температура 600—800° К.

Предварение выпуска обеспечивает минимальное сопротивление движению поршня вверх в последую­щем такте. Рабочий ход совершается за 160—180° угла поворота коленчатого вала.

Четвертый такт — выпуск. Продолжается от точки 5 до точки 6. При выпуске поршень, двигаясь вверх от н. м. т., выталкивает от­работавшие продукты сгорания. Выпускной клапан закрывается с некоторым запозданием (на 10—30° угла поворота коленчатого вала после в. м. т.).

Это улучшает удаление отработавших про­дуктов горения за счет отсасывающего действия газов, тем более что в это время впускной клапан уже открыт. Такое положение клапанов называется «перекрытием клапанов». Перекрытие кла­панов обеспечивает более совершенное удаление продуктов сгора­ния.

Выпуск осуществляется в течение 225—250° угла поворота коленчатого вала.

Двухтактный двигатель.

Главный двигатель судна схема

На рис. 127 показана схема работы двухтактного дизеля. Газораспределение в двухтактных двигате­лях осуществляется через продувочные окна П и выпускные окна В. Продувочные окна соединены с продувочным ресиве­ром Р, в который продувочным насосом Н нагнетается чистый воз­дух под давлением 0,12—0,16 Мн/м2.

Выпускные окна, несколько выше расположенные, чем продувочные, соединяются с выпускным коллектором. Топливо подается в цилиндр форсункой Ф. Рабочий цикл двухтактного двигателя осуществляется за два хода поршня, за один оборот коленчатого вала.

Открытие и закрытие выпускных и продувочных окон производится поршнем.

Рассмотрим последовательность процессов в цилиндре.

Первый такт — горение, расширение, выпуск и продувка. Пор­шень движется вниз от в. м. т. к н. м. т. В начале такта происхо­дит бурное горение с повышением давления газов до 5—10 Мн/м2 и температуры до 1700—1900° К для тихоходных двигателей и 1800—2000° К для быстроходных.

Горение заканчивается в точке 4 и затем происходит расширение продуктов сгорания (участок 4—5) до давления 0,25—0,6 Мн/м2 и температуры 900—1200° К. При положении мотыля в точке 5 (за 50—70° до н. м. т.) откры­ваются выпускные окна, давление в цилиндре резко падает и на­чинается выпуск отработавших газов выпускного коллектора в ат­мосферу.

Высота продувочных окон подбирается таким образом, чтобы к моменту их открытия давление газов в цилиндре было бы близко к давлению продувочного воздуха в продувочном ресивере. После открытия продувочных окон (точка 6) продувочный воздух, поступая в цилиндр, вытесняет продукты сгорания через выпускные окна, при этом часть воздуха уходит с отработавшими газами.

При открытых продувочных окнах происходит принудительная очистка цилиндра и заполнение его свежим зарядом; этот процесс называется продувкой.

Второй такт. Процесс продувки продолжается также при дви­жении поршня вверх от н. м. т. до закрытия продувочных окон (точка 1).

После закрытия поршнем выпускных окон (точка 2) процесс выпуска заканчивается и начинается процесс сжатия све­жего заряда воздуха. В конце сжатия (в. м. т.) давление воздуха равно 3,5—5 Мн/м2, а температура составляет 750—800° К.

Высо­кая температура воздуха в конце сжатия обеспечивает самовос­пламенение топлива. Затем цикл повторяется.

По тем же соображениям, что и для четырехтактных дизелей, топливо в цилиндр подается с опережением в 10—20° поворота ко­ленчатого вала до в. м. т. (точка 3).

В настоящее время на судах применяют как двухтактные, так и четырехтактные дизели. Для крупнотоннажных грузовых и пас­сажирских судов основным является двухтактный двигатель.

Ти­хоходные двухтактные крейцкопфного типа дизеля долговечны, отличаются высокой экономичностью, но имеют большой вес и га­бариты. При одной и той же частоте вращения и одинаковых раз­мерах цилиндров мощность двухтактного двигателя теоретически вдвое больше мощности четырехтактного.

Увеличение мощности двухтактного двигателя обусловлено сгоранием вдвое большего количества топлива, чем в четырехтактном, но так как объем ра­бочего цилиндра (из-за наличия выпускных и продувочных окон) используется неполностью, а часть мощности (4—10%) затрачи­вается на приведение в действие продувочного насоса, то факти­ческое превышение мощности в двухтактном двигателе над мощ­ностью четырехтактного составляет 70—80%.

Четырехтактный двигатель при одинаковых мощности и ча­стоте вращения с двухтактным имеет большие размеры и вес.

Двухтактный двигатель при одинаковых частоте вращения и числе цилиндров с четырехтактным вследствие удвоенного числа рабо­чих циклов работает более равномерно.

Минимальное число ци­линдров, обеспечивающее надежный пуск для двухтактного дви­гателя — четыре, а для четырехтактного — шесть.

Отсутствие клапанов и приводов к ним у двухтактного двига­теля со щелевой продувкой упрощает его конструкцию. Однако на изготовление деталей требуются более прочные материалы, так как двухтактные двигатели работают при более высоких темпера­турных условиях.

В двухтактных двигателях очистка, продувка и зарядка све­жим воздухом цилиндра осуществляется на протяжении части одного хода, поэтому качество этих процессов ниже, чем у четы­рехтактного двигателя.

Четырехтактные двигатели удобнее в отношении повышения их мощности путем наддува. Для них используют более простую схему наддува, теплонапряженность цилиндров меньше, чем у двухтактных дизелей.

Для современных четырехтактных дизелей с газотурбинным наддувом удельный эффективный расход топ­лива составляет 0,188—0,190 кг/(квт ? ч), а для двухтактных тихо­ходных дизелей с наддувом 0,204—0,210 кг/(квт?ч).

Ссылка на основную публикацию
Adblock
detector