Влияние свойств топлив на работу двигателей

Групповой состав бензинов, реализуемых в настоящее время на топливном рынке России, весьма разнороден. Он определяется источником происхождения сырья, технологиями его переработки, а также способами получения заданных физико-химических показателей топлива.

По данным кафедры ДВС СПбГПУ, полученным в ходе периодических исследований уровня качества бензинов, содержание ароматических углеводородов в зависимости от марки топлива и его вида меняется в достаточно широких пределах – от 30 до 56 %, олифиновых углеводородов – от 2 до 18 %, оксигенатов – от 0 до 15 % (см. Приложения 2, 3).

Различие группового состава топлива оказывает существенное влияние на процессы смесеобразования и сгорания бензовоздушных смесей в

двигателе и тем самым определяет параметры мощности, топливной экономичности и токсичности отработавших газов.

Проведенные исследования показали, что для топлив с близкими значениями октановых чисел, определенными по моторному и исследовательскому методам, изменение группового состава топлив может дать весьма значительную разницу в выходных показателях бензинового ДВС. По мощности различие может составить до 2..3 % для карбюраторных ДВС и 4…6 % для впрысковых (рис. 24).

Влияние свойств топлив на работу двигателей

Различие в эффективном к.п.д. цикла, определяющем качество процессов сгорания и смесеобразования, еще более значительно – соответственно 4…7 % для карбюраторных и 5…9 % для впрысковых двигателей. Особенно велико различие в показателях токсичности. Так, по компонентам СН и NОx оно может составлять до 20…25 % для двигателей обоих типов (рис. 25).

Влияние свойств топлив на работу двигателей

Влияние химического состава топлива на параметры работы двигателя внутреннего сгорания проявляется через изменение следующих физико-химических показателей топлива.

Во-первых, с изменением состава топлива изменяется его теплотворная способность. В настоящее время этот параметр действующими ГОСТами не нормируется (кроме авиационных бензинов), однако он оказывает значительное влияние на работу двигателя в реальных условиях.

Так, в товарных бензинах в зависимости от состава низшая теплотворная способность может изменяться в пределах от 41,0 до 44,0 МДж/кг (см. Приложения 1–3), т. е. изменяться от топлива к топливу более чем на 5 %. Особенно заметно понижение теплотворной способности топлив на бензинах с высоким содержанием кислородсодержащих высокооктановых компонентов, например МТБЭ.

Изменение теплотворной способности наиболее значимо влияет на параметры мощности и топливной экономичности бензинового двигателя.

В-вторых, состав топлива существенно меняет скорость и полноту сгорания топлива, особенно в зоне обогащенных топливовоздушных смесей. Наименьшими скоростями сгорания обладают топлива с высоким содержанием полициклических ароматических углеводородов (ПАУ).

Наличие в бензинах связанного кислорода повышает скорость и полноту сгорания.

Эти параметры определяют изменение как экономических характеристик двигателя, так и содержания токсичных компонент, особенно остаточных углеводородов СН и оксидов азота NOx при использовании различных бензинов.

В-третьих, бензины различного группового состава могут существенно отличаться по плотности. Этот параметр ранее действующими ГОСТами нормировался и должен был находиться в диапазоне 720…775 кг/м3. Однако в новом Техническом регламенте (Приложение 4) эта норма отсутствует.

А ведь плотность топлива для реального двигателя имеет принципиальное значение. Это объясняется тем, что все дозирующие элементы системы топливоподачи настроены на объемные расходы топлива, т. е. массовые цикловые подачи на одних и тех же режимах для разных бензинов будут отличаться в зависимости от плотности топлива.

Это в свою очередь меняет состав топливовоздушной смеси, причем в

  • достаточно широком диапазоне, чтобы оказать существенное влияние на работу двигателя, особенно в зоне мощностного обогащения на высоких нагрузках.
  • В-четвертых, от химического состава топлива существенно зависит его фракционный состав, что в свою очередь влияет на его испаряемость, и следовательно, на карбюрационные свойства бензина.

В-пятых, групповой состав топлив оказывает значительное влияние на фактическую детонационную стойкость бензинов. Проведенные исследования показывают, что даже при весьма близких значениях ОЧИ и ОЧМ пределы детонации в реальных условиях сильно зависят от состава топлив, метода получения заданного октанового числа, наличия или отсутствия оксигенатов.

Так, при испытаниях бензинов АИ-92 было отмечено различие в нагрузке на двигатель, при которой фиксировались детонационные стуки, на 12…17 % в зависимости от состава бензина и скоростного режима работы двигателя.

Этот эффект особенно влияет на характеристики впрысковых ДВС, где фактор детонации является одним из сигналов для системы управления, которая меняет алгоритм работы системы зажигания.

Из основных параметров состава бензинов влияние на выходные показатели двигателя в большей степени оказывают содержание ароматических углеводородов и оксигенатов, а также наличие или отсутствие моющих присадок.

Влияние содержания ароматических углеводородов на параметры мощности и топливной экономичности имеет сложный характер с оптимумом, близким к величинам порядка 40 %, т. е. в зоне бензинов класса “Евро-3”.

Минимум токсичности отработавших газов наблюдается при уменьшении содержания ароматики до уровня 30…32 %, т. е. в зоне бензинов класса “Евро-4”.

Дальнейшее снижение содержания ароматических углеводородов не приводит к существенному улучшению экологических показателей двигателя, но значительно ухудшает мощностные.

Отчасти это связано с тем, что чрезмерное уменьшение доли ароматики приводит к снижению фактической детонационной стойкости топлива и требует использования низкокалорийных высокооктановых кислородсодержащих компонент. А это, в свою очередь, приводит к снижению общей теплотворной способности топлива.

Кроме того, топлива с низким содержанием ароматических углеводородов (менее 30 %) и оксигенатов чаще всего характеризуются низкой плотностью, что существенно меняет состав топливовоздушной смеси, уводя его в зону неэффективных регулировок.

Повышенные же концентрации ароматических углеводородов (более 45 %) существенно снижают скорость сгорания топлива, уменьшая термическую эффективность цикла, уменьшают полноту сгорания, что в значительной степени влияет на увеличение выхода остаточных углеводородов.

С другой стороны, выход оксидов азота на таких видах топлив существенно уменьшается из-за снижения температур сгорания в цилиндрах двигателя. Такие топлива обладают повышенной плотностью (до 770 кг/м3), что также меняет состав смеси в неблагоприятном для эффективного сгорания направлении.

Особенно сильно влияет содержание ароматических углеводородов на параметры впрыскового двигателя, имеющего l-регулирование.

Важным фактором, определяющим качество реальной работы бензинов, является содержание в их составе оксигенатов. Наиболее используемая в настоящее время кислородсодержащая компонента – метилтретбутиловый эфир (МТБЭ).

Действующими нормативами содержание МТБЭ в бензинах ограничено 15 об.

%, что связано с существенным падением общей теплотворной способности топлива при увеличении содержания оксигената, а также с повышением коррозионной активности бензина.

Проведенное исследование влияния содержания МТБЭ на характеристики двигателя, в котором для бензинов с примерно равным содержанием ароматических углеводородов (33…36 %) содержание МТБЭ менялось от 0 до 11 %, показало, что оптимум с точки зрения минимального расхода топлива лежит в области 6…7 % содержания МТБЭ. Такая концентрация оксигената, обеспечивая минимум выхода остаточных углеводородов, дает максимум содержания оксидов азота. Это в очередной раз подтверждает сложный многопараметрический характер задачи оптимизации группового состава топлива.

Механизм влияния содержания МТБЭ на выходные параметры двигателя весьма сложен и неоднозначен.

При его описании следует учитывать влияние содержания этого оксигената на детонационную стойкость топлива, на его плотность, на изменение реального состава смеси с учетом связанного кислорода, на скорость и полноту сгорания, а также на общую теплотворную способность бензина.

Надо отметить, что указанные результаты получены для конкретных видов бензинов с примерно сходным составом по содержанию различных групп углеводородов. Возможно, что для других концентраций ароматических углеводородов оптимальное содержание МТБЭ будет иным. Для выяснения этого требуются дополнительные исследования.

Важным фактором влияния на выходные показатели бензинового (в первую очередь – впрыскового) двигателя является наличие в составе бензинов моющих присадок. Очевидно, что при тех минимальных процентах ввода моющей присадки в топливо, которая практикуется в современной технологии производства топлив, она не может оказать существенного мгновенного действия и изменить параметры двигателя.

Эффект от применения моющих присадок проявляется после значительного времени ее присутствия в двигателе. В ходе проведения многочисленных исследований работы двигателей на топливах, содержащих моющие присадки, была отмечена общая закономерность временного изменения параметров топливной экономичности и токсичности отработавших газов.

Так, на начальном этапе работы бензина с моющей присадкой наблюдается некоторое ухудшение выходных параметров двигателя по мощности и токсичности отработавших газов по компоненте СН. Это, очевидно, обусловлено увеличением количества механических примесей и прочих загрязнений, попадающих в топливо со стенок элементов системы питания двигателя.

Причем этот эффект тем более выражен, чем выше начальная степень загрязненности двигателя и больше концентрация моющей присадки. По мере увеличения времени наработки двигателя на бензине с моющей присадкой происходит стабилизация параметров на уровне, в определенной степени превышающем начальный – как по мощности и топливной экономичности, так и по токсичности отработавших газов.

Следует, однако, отметить не повышение этих параметров, а их восстановление до уровня, приближающегося к штатным параметрам ДВС.

Механизм влияния моющей присадки очевиден. Удаление слоя загрязнений и препятствие образованию новых отложений на поверхностях впускной системы двигателя восстанавливает наполнение цилиндров двигателя и условия смесеобразования на впуске.

Кроме того, уменьшение уровня загрязненности камеры сгорания нормализует тепловое состояние деталей ЦПГ двигателя, уменьшая тем самым его склонность к детонации. Все это вносит свой вклад в повышение технико-экономических и экологических показателей ДВС.

Следует отметить, что эффективность моющей присадки в свою очередь сильно зависит от группового состава исходного бензина и требует оптимизации по соотношению “цена-качество” для каждого вида топлива.

Так, было отмечено снижение эффективности некоторых моющих присадок на бензинах с высоким содержанием оксигенатов и, напротив, рост их моющих свойств на топливах с большим содержанием ароматических углеводородов.

Читайте также:  Smart roadster какой двигатель
Влияние свойств топлив на работу двигателей

§ 3. Влияние топлива на техническое состояние двигателей [1969 Ершов Б.В., Залетаев М.В., Ульянецкий А.М., Юрченко М.А. — Техническое обслуживание автомобилей]

Влияние свойств топлив на работу двигателей

Износ двигателя в значительной степени зависит от состава горючей смеси и от протекания процессов сгорания. При работе на низкосортном топливе износ двигателя возрастает в 1,5 — 2 раза. Это объясняется тем, что трудно испаряющиеся фракции поступают в цилиндры двигателя в жидком состоянии и смывают масляную пленку со стенок. При содержании в топливе смол и серы резко повышается нагарообразование и возрастает коррозия деталей двигателя. При недостатке воздуха (работа на переобогащенной смеси) излишнее топливо конденсируется в цилиндрах двигателя и смывает смазку. При избытке воздуха (работа на бедной смеси) излишний кислород воздуха окисляет смазку цилиндров. В результате работы двигателя на богатой и бедной смесях возникает перегрев двигателя, образуется нагар и возрастает износ двигателя.

При низком качестве топлива, раннем зажигании и обедненной горючей смеси, при перегреве двигателя и нагарообразовании возникает детонационное сгорание, которое начинается в несгоревших слоях смеси, волне горения при этом предшествует волна давления, процессы окисления интенсифицируются и происходит детонационный взрыв, который сопровождается мгновенным выделением большого количества энергии в малом объеме, что вызывает резкое местное повышение давления и возникновение детонационной упругой волны, распространяющейся со скоростью в 1500-2500 м/сек. Детонационная волна, воздействуя на стенки цилиндра и днище поршня, вызывает вибрацию деталей (детонационные стуки). Она смывает слой смазки на стенках цилиндра, вследствие чего увеличивается их износ, а возникающие при детонации активные продукты окисления резко повышают коррозию.

Работа двигателя с детонацией вызывает пригорание поршневых колец, прогар клапанов и разрушение днищ поршней, вкла-дышей коренных и шатунных подшипников коленчатого вала.

Основным топливом (для карбюраторных двигателей) являются автомобильные бензины. По ГОСТ 2084 — 67 предусмотрен выпуск автомобильных бензинов: А — 66, А — 72, А — 76, АИ — 93 и АИ — 98. Качество бензинов в основном определяется их октановым числом, фракционным составом, склонностью к образованию отложений и коррозионными свойствами.

Для повышения детонационной стойкости автомобильных топ-лив, обладающих низким октановым числом, к ним добавляются этиловые жидкости марок 1-ТС и Р-9. Основным компонентом этиловой жидкости является татраэтилсвинец (ТЭС), который в жидкостях соответственно составляет 58 и 54%.

В этиловых жидкостях имеются выносители, предназначенные для образования со свинцом летучих соединений, выходящих из двигателя вместе с отработавшими газами, что уменьшает свинцовые отложения в нагаре на стенках камер сгорания, клапанах и электродах свечей.

Тетраэтилсвинец чрезвычайно ядовит, поэтому этиловая жидкость добавляется в бензин только в заводских условиях и в небольших количествах.

Этилированные бензины нельзя применять для мытья рук и деталей, для заправки паяльных и осветительных ламп, в качестве растворителя для красок и как средство для чистки одежды.

При длительном хранении этилированного бензина в осадках, отлагающихся в бензобаках, топливопроводах и приборах питания, содержится до 15% окислившегося тетраэтилсвинца, а при работе на этих бензинах тетраэтилсвинец попадает в нагар и масло.

Поэтому при промывке систем питания автомобиля и смазки двигателя, а также при очистке нагара и замене двигателя необходимо соблюдать меры предосторожности.

  • С увеличением степени сжатия в двигателе необходимо повышать октановое число топлива.
  • Для нормальной работы новых двухрядных 8-ми цилиндровых двигателей типов ЗМЗ — 66 и ЗИЛ — 130 необходимо применять бензины с октановым числом (по моторному методу) не ниже 76.
  • Бензин АИ — 93 предназначен для двигателей со степенью сжатия 7,0 — 7,5, АИ — 98 со степенью сжатия 8,0 — 9,5.
  • По фракционному составу бензина можно определить его влияние на работу двигателя.

По температуре перегонки (испарения) 10% бензина можно определить «пусковые» его качества и склонность к образованию паровых пробок.

Обычно для запуска двигателя при температуре воздуха минус 15 — 20° С необходимо применять бензины с температурой перегонки 10% — не более 75 — 79° С.

В случае значительного понижения этой температуры возникают перебои в подаче топлива, и обедняется смесь из-за образования паровых пробок, при ее повышении затрудняется запуск двигателя и увеличивается пусковой износ.

Температура перегонки 50% бензина (испаряются рабочие фракции) характеризует его способность обеспечивать устойчивую работу на малых оборотах, быстрый прогрев и приемистость двигателя.

Температуры перегонки 90% бензина и конца его разгонки характеризуют наличие в нем тяжелых фракций и определяют влияние бензина на мощность, экономичность и износ двигателя. Зависимость износа двигателя от температуры конца перегонки бензина, характеризующей его фракционный состав, показана на рис. 3.

Одной из причин утяжеления фракционного состава является наличие в нем смолистых веществ.

Смолы, содержащиеся в топливе, отлагаются на стенках бензобаков, бензопроводов, в топливном фильтре, бензонасосе и карбюраторе в виде липкого осадка, нарушая подачу топлива.

Попадая с топливом во впускной трубопровод и цилиндры, смолы оседают на горячих стенках трубопровода, стержнях, тарелках и седлах клапанов, в камере сгорания, на днище поршня, свечах и под действием высоких температур образуют нагар.

Отложения смол и нагара на стержнях и тарелках клапанов нарушают их посадку и вызывают зависание клапанов. Отложения смол в цилиндрах способствуют возникновению детонации и самовоспламенения смеси. Отложение смол во впускном трубопроводе затрудняет подачу горючей смеси.

Содержание фактических смол в топливе допускается в пределах 2 — 20 мг на 100 мл бензина. Склонность топлива к смолообразованию зависит от его химической стабильности.

Чем больше индукционный период окисления, тем более стоек бензин и тем дольше он может храниться без смолообразования.

Интенсивность смолоотложения в топливе увеличивается в процессе его хранения при повышенных температурах, в грязной, влажной, ржавой, полностью незаполненной и незакупоренной таре.

Влияние свойств топлив на работу двигателейРис. 3. Зависимость износа двигателя от фракционного состава бензина

Коррозионные свойства топлива определяются наличием в нем серы и сернистых соединений, кислот, щелочей и воды. С понижением теплового состояния двигателя, работа на сернистых бензинах сопровождается значительным износом. Наличие серы в топливе увеличивает нагарообразование и снижает антидетонационные качества топлива.

Для транспортных и быстроходных дизелей выпускается высококачественное топливо марок ДА, ДЗ и ДЛ (ГОСТ 4749 — 49) и марок А, 3 и Л (ГОСТ 305 — 62).

Качество дизельного топлива в основном определяется его цетановым числом, фракционным составом, вязкостью, температурой застывания, склонностью к нагарообразованию и коррозионностью.

Цетановое число характеризует самовоспламеняемость топлива. Время от начала подачи топлива в. цилиндр до момента воспламенения смеси называется периодом задержки воспламенения. Чем больше этот период, тем более жестко работает двигатель.

С повышением цетанового числа уменьшается жесткость работы двигателя, в то же время увеличивается склонность топлива к застыванию. Поэтому у арктического (А) и зимнего (3) дизельных топлив цетановое число разно 40, а у летнего (Л) оно повышено до 45.

Фракционный состав топлива характеризует его общую испаряемость, а температура выкипания 50% — его пусковые качества. При чрезмерном облегчении фракционного состава ухудшается самовоспламеняемость топлива. При работе на топливе, имеющем тяжелый фракционный состав и содержащем смолы, увеличивается нагарообразование в двигателе.

Вязкость дизельного топлива характеризует его текучесть и смазывающие качества.

Коррозионные свойства дизельного топлива определяют по наличию в нем сернистых соединений, кислот и щелочей. В целях снижения коррозионного износа двигателей, работающих на сернистом топливе по ГОСТ 305 — 62, нужно применять специальные дизельные масла.

Качество топливо-смазочных материалов и их влияние на техническое состояние машин

Влияние свойств топлив на работу двигателей

Реклама

Техника и оборудование 05.09.2016 14437 Источник: Владимир Михайлович Янзин, канд. тех. наук, доцент кафедры «Эксплуатация машинно-тракторного парка» ФГБОУ ВПО «Самарская государственная сельскохозяйственная академия»

Длительная безаварийная работа любой машины зависит не только от строгого соблюдения установленных правил и норм эксплуатации, но и от использования только определенных сортов топливо-смазочных материалов (ТСМ) соответствующего качества.

Качество ТСМ влияет на такие важнейшие показатели двигателей внутреннего сгорания, как экономичность, долговечность, токсичность отработавших газов, металлоемкость и др. Например, путем использования высокоэффективных ТСМ ресурс двигателя можно увеличить в 1,5–2 раза, а токсичность отработавших газов уменьшить в несколько раз.

В настоящее время многие сельхозпроизводители в целях экономии финансовых средств часто приобретают ТСМ у не проверенных фирм и посредников. Проведенные нами анализы проб таких нефтепродуктов показали, что некоторые партии топлив и моторных масел использовать в двигателях машин нельзя.

Бензин. Мощность бензинового двигателя, надежность работы, его экономичность во многом зависят от качества применяемого топлива. Качество бензина зависит от его физико-химических свойств: фракционного состава, детонационной стойкости, теплоты сгорания и т. д.

Фракционный состав бензина – один из важнейших показателей, характеризующий его качество как для экономичной, так и надежной и долговечной работы двигателя.

Так, от фракционного состава бензина зависит запуск двигателя и время, затрачиваемое на его прогрев; перебои в работе двигателя, вызываемые образованием паровых пробок или обледенением карбюратора; приемистость двигателя; расход топлива и масла; мощность двигателя; образование углеродистых отложений, а также в определенной степени износ трущихся деталей.

Для характеристики фракционного состава в стандарте указываются температуры, при которых перегоняется 10, 50 и 90% бензина, а также температуры начала и конца его перегонки.

По температуре начала перегонки (для летнего бензина не ниже 35°С) и перегонки 10% бензина (t 10%) судят о наличии в нем головных (пусковых) фракций, от которых зависит легкость пуска холодного двигателя.

 Повышенное содержание низкокипящих фракций в бензине не всегда является положительной особенностью.

В этом случае увеличивается склонность бензинов к паровым пробкам в системе топливоподачи двигателя и значительно возрастают потери бензина на испарение прихранении на нефтескладе.

Читайте также:  Недоработки и основные минусы peugeot 206

После пуска двигателя интенсивность его прогрева, устойчивость работы на малой частоте вращения коленчатого вала и приемистость (интенсивность разгона автомобиля при полностью открытом дросселе) зависят главным образом от температуры перегонки 50% бензина (t 50%).

Чем ниже эта температура, тем легче испаряются средние фракции бензина, обеспечивая поступление в непрогретый еще двигатель горючей смеси необходимого состава, устойчивую работу на малой частоте вращения коленчатого вала двигателя и хорошую приемистость.

 По температуре перегонки 90% (t 90%) и температуре конца перегонки (кипения) судят о наличии в бензине тяжелых трудноиспаряемых фракций, интенсивности и полноте сгорания рабочей смеси и мощности, развиваемой двигателем.

Для обеспечения испарения всего бензина, поступающего в цилиндры двигателя, эти температуры должны быть как можно более низкими.

Концевые фракции поступают в цилиндр не испарившись, они не участвуют в сгорании, и экономичность двигателя ухудшается. Тяжелые фракции бензина, осевшие на стенках цилиндра, смывают масло и увеличивают износ.

Несгоревшее топливо откладывается на поверхностях камеры сгорания и поршней в виде нагара, который инициирует детонацию и калильное зажигание, нарушающие работу двигателя. Чем меньше t 90% и t к.п.

бензина, тем лучше.

Проведенные нами анализы проб бензинов из различных хозяйств области показывают, что иногда используют бензины с высокой температурой конца кипения. Это объясняется тем, что нередко бензины перевозят в тех же автомобильных цистернах, в которых транспортируют дизельное топливо.

В емкости всегда остается 30–40 кг топлива, которое при последующем ее заполнении смешивается с новым нефтепродуктом. Установлено, что при температуре конца перегонки бензина t к.п. = 230…

2400С износ цилиндропоршневой группы двигателя увеличивается в два раза, а расход топлива повышается на 10%.

Дизельное топливо. В настоящее время хозяйствами области закупается дизельное топливо ЕВРО по ГОСТ Р 52368–2005. Согласно этого ГОСТа выпускаются 11 сортов дизельного топлива: A, B, C, D, E, F, а также классы: 0, 1, 2, 3, 4. Применение дизельного топлива по предельной температуре фильтруемости приведено в таблице.

Применение дизельного топлива по предельной температуре фильтруемости

летний период переходные весенний/осенний периоды зимний период
сортА сортВ сортС сортD сорт E сорт F икласс 0 класс1 класс2 класс3 класс4
невыше+5°С невыше0°С невыше–5°С невыше–10°С невыше–15°С не выше–20°C невыше–26°С невыше–32°С невыше–38°С невыше–44°С
  • Все сорта выпускаются трех видов:
  • вид I – содержание серы, мг/кг, не более 350,0;вид II– содержание серы, мг/кг, не более 50,0;
  • вид III – содержание серы, мг/кг, не более 10,0.
  1. Пример записи дизельного топлива при заказе и в технической документации:Топливо дизельное ЕВРО по ГОСТ Р 52368–2005 (ЕН 590:2009)– сорт А (В, С, D, Е, F), вид I (вид II, вид III);
  2. – класс 0 (1, 2, 3, 4), вид I (вид II, вид III).

Рекомендуемое сезонное применение дизельных топлив в Самарской области в соответствии с требованиями к предельной температуре фильтруемости:– летний период (с 1 мая по 30 сентября (5 мес.) – сорт C;– переходные весенний/осенний периоды (с 1 по 30 апреля (1 мес.) / с 1 по 31 октября (1 мес.) – сорт E;

– зимний период (с 1 ноября по 31 марта (5 мес.) – класс 1.

Дизельное топливо должно обладать хорошими распыливанием, смесеобразованием, испарением и прокачиваемостью, быстрым самовоспламенением; полностью сгорать, причем без дымления; не вызывать повышенного нагаро- и лакообразования на клапанах и поршнях, закоксовывания распылителя, зависания иглы распылителя, коррозии резервуаров, баков, деталей двигателя и т. д.

На качество смесеобразования наряду с конструкцией камеры сгорания двигателя влияют свойства применяемого топлива: плотность, вязкость, давление насыщенных паров, поверхностное натяжение, фракционный состав и др. 

Повышение плотности топлива сказывается на процессе смесеобразования так же, как и увеличение вязкости: возрастает длина струи, ухудшается экономичность двигателя и увеличивается дымность.

При малой плотности топлива уменьшается длина струи, ухудшается процесс смесеобразования и увеличивается износ прецизионных пар насоса высокого давления, для которого топливо одновременно служит смазочным материалом.

Поэтому плотность дизельного топлива должнабыть оптимальной с учетом сезонности эксплуатации и других факторов и находиться в пределах при 15°С для сортов А, В, С, D, Е, F – 820–845 кг/ м3, для классов 1, 2, 3, 4 – 800–845 кг/м3.

Причина повышенной коррозии и износов деталей двигателя – наличие в топливе сернистых соединений, органических кислот, водорастворимых кислот и щелочей. На коррозионную агрессивность дизельных топлив существенно влияют сернистые соединения.

Установлено, что общий износ деталей двигателя приблизительно прямо пропорционален содержанию серы в дизельном топливе. При температуре охлаждающей жидкости в двигателе ниже 70°С возрастает степень коррозионного износа, поскольку увеличивается образование серной кислоты.

Продукты сгорания топлива, содержащие сернистый и серный ангидриды, проникают через неплотности цилиндропоршневой группы в картер, где образуют с водой серную и сернистую кислоты. Смешиваясь с маслом, кислоты ухудшают его качество, в частности антикоррозионные свойства, вызывают быстрое старение.

Химическому износу подвергаются вкладыши подшипников, шейки коленчатых валов и другие детали. Особенно сильной коррозии подвержены вкладыши из свинцовистой бронзы.

В результате действия сернистых продуктов на картерное масло получаются смолистые соединения, которые затем образуют нагар. При наличии сернистых соединений увеличивается нагаро- и лакообразование в цилиндропоршневой группе.

Из-за содержания серы нагар становится твердым, что приводит к абразивному изнашиванию цилиндропоршневой группы. Отложение лака в зоне поршневых колец ведет к их закоксовыванию и заклиниванию.

 Активные сернистые соединения (элементная сера, меркаптаны, сероводород) обладают высокой коррозионной агрессивностью, поэтому товарные топлива для ДВС не должны их содержать.

Проведенные нами многочисленные анализы проб дизельного топлива, полученных из различных районов области, показали, что очень часто закупаются партии топлива с большим содержанием активной серы, а это недопустимо. Работа двигателя на таком топливе неизбежно приведет к преждевременному выходу его из строя. Такие пробы мы получали из многих районов области.

Наличие воды и механических примесей в дизельном топливе служит одной из главных причин отказов топливной аппаратуры. Вода и механические примеси могут попадать в топливо, начиная от пути следования его из нефтезавода до использования в двигателе. Большинство механических примесей имеют большую твердость и вызывают повышенный износ деталей двигателя.

Особенно вредны примеси для топливных насосов высокого давления, насосов-форсунок, форсунок. В прецизионных парах зазор составляет 1,5–3 мкм, поэтому даже небольшое количество механических примесей, размер которых соизмерим с зазором плунжерных пар, вызывает их интенсивное изнашивание.

При использовании засоренного топлива срок службы топливной аппаратуры сокращается в 5–6 раз.

Перед заправкой в бак машины топливо должно отстаиваться не менее 10 дней. Чистота различных слоев топлива при этом будет неодинаковой.

Даже при 10-дневном отстое в нижних слоях топлива остаются мельчайшие частички механических примесей, представляющие наибольшую опасность для топливной аппаратуры. Машины необходимо заправлять топливом верхних слоев. Содержание механических примесей в дизельном топливе не допускается.

Моторное масло. Моторное масло должно надежно и длительно выполнять свои функции, обеспечивая заданный ресурс двигателя.

Основные функции моторного масла в двигателях – уменьшение трения между трущимися поверхностями деталей; снижение износа трущихся поверхностей и предотвращение их заедания; охлаждение деталей; дополнительное уплотнение поршневых колец, защита деталей от коррозии и загрязнения углеродистыми отложениями.

От вязкости моторного масла при рабочих температурах в двигателе зависят качество смазывания трущихся поверхностей деталей и их износ.

Вязкость моторного масла, в свою очередь, зависит от температуры, с увеличением которой она понижается, а с уменьшением – повышается. Интенсивность изменения вязкости масла при изменении температуры у разных моторных масел различна.

Крутизну вязкостнотемпературной кривой оценивают по индексу вязкости. Чем выше индекс вязкости, тем лучше технико-эксплуатационные свойства моторных масел.

Оценивая вязкость проб моторных масел, представленных нам из различных хозяйств области, мы установили, что в основном вязкость проверяемых масел соответствует требованиям ГОСТ 17479.1–85. Однако иногда вместо заявленного зимнего моторного масла проба соответствует летнему маслу и наоборот.

Очень важными эксплуатационными показателями моторного масла являются его антиокислительные и антикоррозионные свойства. Эти свойства моторных масел зависят главным образом от эффективности антикоррозионных и антиокислительных присадок, а также от состава базовых компонентов. В процессе работы масла в двигателе коррозионность значительно возрастает.

Антикоррозионные присадки защищают вкладыши подшипников и другие детали, выполненные из цветных металлов, образуя на их поверхности прочную защитную пленку.

Нейтрализующая способность – это важнейшее химическое свойство моторных масел, характеризуемое щелочным числом. Оно показывает, какое количество кислот, образующихся при окислении масла или попадающее в него из продуктов сгорания топлива, может нейтрализовать единица массы масла.

Щелочное число масла обусловливается содержанием в них моющих и диспергирующих присадок, обладающих щелочными свойствами и препятствующих отложению смолисто-асфальтовых веществ на деталях кривошипно-шатунного механизма и особенно на деталях цилиндропоршневой группы двигателей в виде лаков и нагаров.

Чем выше концентрация присадки в масле (щелочное число), тем меньше нагарообразование в двигателе. Однако концентрация присадки в масле во время работы двигателя постепенно снижается (срабатывается) и защитные свойства масла ухудшаются. Это является одним из основных признаков необходимости замены масла в двигателе.

Анализы проб моторных масел показали, что очень часто по щелочному числу масла не соответствуют ГОСТ 17479.1–85.

Так, например, у масла М-10Г2 щелочное число должно быть не менее 6,0 мг КОН/г, а оно часто составляет всего 3,5–4,0 мг КОН/г, у масла М-10Д2М вместо 8,2 мг КОН/г 5,5–6,5 мг КОН/г.

Срок службы таких масел значительно меньше, и они должны заменяться в двигателе чаще. А это дополнительные затраты труда и денежных средств.

Таким образом, все вышеприведенное свидетельствует о том, что качество топливо-смазочных материалов значительно влияет на техническое состояние машин. Перед их приобретением и применением необходимо убедиться, что качество покупаемых материалов соответствует требованиям ГОСТов.  

Читайте также:  Двигатель 4hf1 подробные характеристики

Сделано с любовью в студии C-site.ru

ПОИСК

Влияние свойств топлива на работу двигателя
[c.

201]

Смазочное масло при высоких температуре и давлении под влиянием кислорода воздуха и каталитического действия металлических поверхностей, загрязнения продуктами износа, попадания в него топлива и продуктов его неполного сгорания, воды и внешней пыли изменяет физические и химические свойства. Этот процесс старения свежего масла начинается непосредственно после его заливки в масляную систему и проявляется через непродолжительное время работы двигателя.
[c.59]

Период /, или период задержки самовоспламенения, начинается с момента впрыска топлива и заканчивается моментом самовоспламенения. Наличие этого периода объясняется тем, что для самовоспламенения поданного топлива необходимо, чтобы температура его повысилась до температуры самовоспламенения. Продолжительность периода задержки воспламенения оказывает существенное влияние на развитие всего последующего процесса сгорания и должна занимать возможно короткий промежуток времени (0,001—0,003 с). При более длительном периоде задержки воспламенения в камере сгорания скапливается большое количество топлива, которое при сгорании вызывает чрезмерно резкое нарастание давления, т. е. увеличение жесткости работы двигателя. На продолжительность этого периода влияют физико-химические свойства топлива, температура и давление сжатого воздуха, качество распыливания и завихрения в цилиндре.
[c.385]

Метод определения износа по содержанию железа в масле. В результате износа деталей продукты износа попадают в смазочное масло (в картер). Периодически за определенные периоды работы машины при помощи химического анализа устанавливают содержание железа во взятой пробе масла.

По полученным данным можно построить диаграмму износа в граммах железа — длительность работы машины, агрегата, узла.

Данный метод целесообразен для определения износа деталей кривошипно-шатунного и газораспределительного механизмов двигателей при изучении влияния на износ различных параметров, например свойств топлива, смазки и др. Рассматриваемым методом можно определять содержание в масле не только железа, т. е.

продуктов износа черных металлов, но и цветных металлов — меди, свинца и др. Недостатком метода является невозможность определения износа отдельных деталей и сопряжений. Можно лишь узнать суммарный износ всех деталей, подвергающихся смазке в данном узле, агрегате.
[c.105]

Казалось бы, что дизель как двигатель, работающий с впрыском топлива, вполне пригоден для работы по двухтактному циклу, тем не менее двухтактные дизели не получили особо широкого распространения.

На первый взгляд, это кажется особенно странным, так как увеличение мощности при применении двухтактного процесса по сравнению с четырехтактным весьма значительно. Для двигателей с одинаковым рабочим объемом и числом оборотов увеличение мощности достигает в среднем 70%. Трудность заключается в особенностях работы двигателя по двухтактному циклу.

Если раньше наиболее сложно было организовать хороший газообмен, то теперь эта задача разрешена. Решающее влияние на надежность в работе и срок службы двухтактного двигателя оказывает его значительно более высокая рабочая температура.

Это обстоятельство сильно усложняет работу деталей поршневой группы в основном из-за ухудшения свойств смазочного масла вследствие высокой температуры. Довольно сложно осуществить отвод тепла, так как циркуляция охлаждающей воды оказывается недостаточной, потому что-сплошная поверхность стенок цилиндров нарушена наличием в них газораспределительных окон.

Таким образом, применение конструкции двухтактного двигателя зависит в первую очередь от решения проблем смазки и охлаждения. Особенно справедливо это для двигателей с газообменом исключи-тель ю через окна в стенках цилиндров.

Двигатели с клапанным распределением, получившие известное распространение в зарубежных странах, имеют преимущества в отношении температурных режимов и условий смазки. Определенными преимуществами обладают и двигатели с наддувом, которые, наряду с лучшим использованием тепловой энергии, меньшей тепловой нагрузкой поршня, лучшей смазкой и охлаждением, могут работать с большим избытком воздуха.
[c.392]

Еще одной важной особенностью катапультного старта палубных самолетов является попадание пара катапульты на вход в. воздухозаборники двигателей и влияние его на устойчивость работы двигателей. Как указано выше, на устойчивость работы двигателя при попадании пара катапульты оказывают влияние три фактора неравномерный нагрев на входе в компрессор изменение физических свойств паровоздушной смеси по сравнению с воздухом испарение водяных капелек, появляющихся из перегретого пара катапульты при взаимодействии с воздухом. Основным фактором при этом является быстрое нарастание по времени температуры воздуха на входе в компрессор при значительной неравномерности температурного поля. На рис. 3.6 показан качественный характер изменения режимов работы двигателя на характеристике компрессора. Наличие неравномерного температурного поля из-за несимметричности попадания пара на вход в воздухозаборник приводит к дополнительному усилению температурного воздействия на устойчивость работы двигателя. Тепловое воздействие приводит к изменению параметров компрессора и режима его работы. В начальный период времени (в интервале от до t- ) частота вращения и расход топлива в силу инерционности системы регулирования остаются практически неизменными. Однако приведенные частоты вращения Пщ, и расхода воздуха Gnp значительно снижаются, поскольку эти величины обратно пропорциональны корню из температуры воздуха на входе в компрессор. Рабочая точка на характеристике компрессора быстро перемещается к границе 2 неустойчивой работы компрессора и в момент времени возникает неустойчивая работа компрессора — помпаж в двигателе. При этом появляются хлопки, рост температуры газов за турбиной и снижение частоты вращения ротора. Давление за компрессором резко падает, и возникают его колебания, а давление
[c.179]

Теоретическими и экспериментальными исследованиями динамических свойств двигателей с турбонасосными агрегатами вскрыта тенденция снижения запаса устойчивости этих двигателей как объектов регулирования при усложнении их принципиальной схемы.

В данной работе проводится анализ и дается оценка влияния на запас устойчивости двигателя величины гидравлической массы жидкости в канале насоса.

Анализ проводится на примере объекта, представляющего собой турбонасосный агрегат с газогенератором, работающим на унитарном топливе.
[c.268]

Влияние степени сжатия. Повышение степени сжатия в двигателях с внешним смесеобразованием и принудительным зажиганием приводит к увеличению экономичности работы, связанному с ростом термического к. п. д. цикла (см. гл. I).

Возможности увеличения степени сжатия, ограничиваемые свойствами топлива (октановым числом), рассмотрены ниже, в 5 гл. IX.

Повышение степени сжатия в двигателях с внутренним смесеобразованием не приводит к заметному улучшению индикаторных показателей и используется только для расширения диапазона топлив, на которых может работать двигатель.
[c.182]

Производимого во времени погасания и воспламенения топлива при одном и том же давлении.

К сожалению, выяснилось, что давление дефлаграции существенно зависит от температуры поверхности заряда с увеличением температуры предел дефлаграции снижается и при достаточно высокой температуре может совсем исчезнуть.

Этот эффект был выявлен давно, при лабораторных исследованиях свойств топлив и ПХА. Однако разработчики двигателей не придали сначала ему особого значения.

Лишь позже, после накопления практического материала о поведении двигателей при ОСИ, особенно при многократном включении КС О , достаточно длительной работе газогенератора (сотни секунд) и длительных паузах в работе КС (несколько десятков секунд), стало понятным отрицательное влияние неизбежного теплового прогрева поверхности топлива на эффект дефлаграции.
[c.259]

Внешние условия, в которых должны были находиться и работать эти двигатели, оказывали существенное влияние на их конструктивные особенности. При проектировании указанных двигателей специалистам приходилось принимать во внимание целый ряд специфических обстоятельств.

Так, например, в условиях невесомости топливо в баках будет хаотически перемешиваться с пузырями газа, применяющегося для наддува баков, что может в конечном итоге привести к выходу из строя некоторых элементов двигателя.

Глубокий вакуум приводит к тому, что поверхность элементов двигателя покидают адсорбированные на этих поверхностях газовые молекулы, а также частицы конструкционных материалов, смазки, покрытий и пр. В результате изменяются фрикционные свойства поверхностей, может произойти самопроизвольная сварка подвижных контактирующих металлических частей двигателя.

На различные материалы отрицательно воздействует и солнечная радиация, элементы космических ЖРД находятся в сложных тепловых условиях их температура может колебаться в широких пределах (- 150 + 150°С).
[c.106]

Низкотемпературные свойства топлив оказывают существенное влияние на надежность работы топливных систем реактивных двигателей и самолетов, поэтому в современных технических условиях на авиакеросины к их низкотемпературным свойствам, предъявляются жесткие требования. Так, температура начала кристаллизации авиакеросинов не должна быть выше минус50-60 С, нерастворенная вода в топливах должна практических отсутствовать. Так, согласно международным нормам количество нерастворенной воды в топливах при заправке баков реактивных самолетов не должна превышать 0,003%.
[c.186]

Отложения и нагарообразование в двигателе внутреннего сгорания во многих случаях оказывают большое влияние на его срок службы и, следовательно, на экономичность эксплуатации.

Однако отложения и нагарооб-разование в двигателе обусловливаются не только свойствами применяемой смазки или топлива.

Значительно большее влияние на нагарообразование и отложения оказывают, наряду с конструктивными особенностями дви- гателя (например, форма камеры сгорания, местоположение свечи или топливной форсунки, характер рабочего процесса, тип и качество работы свечей или форсунок), также и такие условия эксплуатации, как нагрузка двигателя, рабочая температура, установка опережения зажигания или момента впрыска и, наконец, изменение технического состояния двигателя в результате износа, недостатка воздуха из-за засорения воздухоочистителя и т. п.
[c.121]

Смотреть страницы где упоминается термин Влияние свойств топлива на работу двигателя
: [c.144]    [c.35]    Смотреть главы в:

Стационарные двигатели внутреннего сгорания в нефтяной промышленности
 -> Влияние свойств топлива на работу двигателя

  • 141 — Влияние на свойства
  • Двигатели Влияние фаз
  • Работа двигателя
  • Работа над свойствами
  • Топливо Свойства
  • Топливо для двигателей

© 2021 Mash-xxl.info Реклама на сайте

Ссылка на основную публикацию
Adblock
detector