1 внешняя скоростная характеристика двигателя способы ее определения

При проектировании рекомендуется один из методов расчета и воспроизведения скоростной характеристики ДВС по координатам одной точки (Nemax, nN) ( метод профессора С.Р. Лейдермана ).

Изменение мощности ДВС можно представить в виде функциональной зависимости:

1 внешняя скоростная характеристика двигателя способы ее определения

  • где a=b=c=1 для карбюраторных ДВС.
  • Наименее устойчивое число оборотов коленчатого вала двигателя (nemin) принимаем nemin =0,13nN=0,13*4500=585 об/мин.
  • Равномерно разбив диапазон чисел оборотов в котором работает ДВС (neminnemax) на 7 частей, воспроизводим всю кривую внешней скоростной характеристики.
  • Одновременно с мощностной характеристикой получаем характеристику изменения крутящего момента на валу ДВС (Ме), значение которого получаем по формуле, в кг*м:

1 внешняя скоростная характеристика двигателя способы ее определения

где Ne – эффективная мощность, л.с.;

ne – частота вращения коленчатого вала, соответствующая Ne.

Или, в Н*м:

1 внешняя скоростная характеристика двигателя способы ее определения

  1. где Ne – эффективная мощность, кВт.
  2. Расчёт заносим в таблицу 1.
  3. Таблица 1 – Параметры внешней скоростной характеристики
Параметры Число оборотов коленчатого вала
585 1000 1500 2500 3500 4500 5500
Ne, кВт 10,98 19,78 30,92 52,58 69,24 75,90 67,57
Me, Н*м 179,28 188,90 196,86 200,83 188,90 161,06 117,32
Ne, л.с. 14,94 26,90 42,05 71,51 94,16 103,00 91,90
Me, кг*м 18,28 19,26 20,07 20,47 19,26 16,42 11,96

По данным таблицы 1 строим график внешней скоростной характеристики (рисунок 1).

1 внешняя скоростная характеристика двигателя способы ее определения

  • Рисунок 1 – Внешняя скоростная характеристика.
  • 3. Расчет передаточных чисел трансмиссии
  • Передаточное число трансмиссии автомобиля определяется выражением:
  • iTP=ik* io, (13)
  • где iK и io — передаточные числа соответственно КПП и главной передачи.
  • Следовательно, для определения передаточного числа трансмиссии автомобиля необходимо отдельно определить передаточное число главной передачи (io) и передаточное число коробки передач (ik).
  • Расчёт передаточного числа главной передачи
  • Передаточное главной передачи равно:

1 внешняя скоростная характеристика двигателя способы ее определения

  1. где rk — радиус качения колеса;
  2. nN – число оборотов вала ДВС, соответствующие максимальной мощности;
  3. vN – скорость автомобиля, соответствующие максимальной мощности.

1 внешняя скоростная характеристика двигателя способы ее определения

Расчёт передаточного числа первой передачи

Определение передаточного числа первой передачи производится по условиям:

1. Преодоление максимальных сопротивлений движению.

2. Сцепление колес с дорогой.

Выполнение первого условия обеспечивает неравенство:

1 внешняя скоростная характеристика двигателя способы ее определения

  • где Memax — максимальный крутящий момент на валу ДВС, определяемый по внешней скоростной характеристике; ψmax — максимальная величина коэффициента дорожного сопротивления.
  • При работе двигателя с полной нагрузкой можно считать, что
  • ηтр~χ,
  • где χ – коэффициент влияния нагрузки.
  • 1 внешняя скоростная характеристика двигателя способы ее определения , (16)
  • где с, к, n – число пар цилиндрических, конических и количество карданов, передающих крутящий момент двигателя на ведущие колеса автомобиля.
  • По кинематической схеме автомобиля:
  • с=2; к=1; n=2,
  • Для легкового автомобиля примем ψmax=0,27:

1 внешняя скоростная характеристика двигателя способы ее определения

  1. Второе условие требует выполнения неравенства:
  2. , (17)
  3. где Gсц — вес приходящийся на ведущие колёса автомобиля;
  4. mp — коэффициент перераспределения реакций при разгоне автомобиля.
  5. Так как проектируемый автомобиль заднеприводной, то mp=1,2.
  6. С учетом обоих условий примем i1=3,5 , как у аналога.
  7. Расчёт передаточных чисел промежуточных передач

Количество ступеней (передач) в коробке передач и соотношения передаточных чисел определяют величину ускорений при разгоне автомобиля. Но главное — это использование мощности ДВС. Чем больше число ступеней, тем лучше использование мощности, но при этом увеличиваются вес и габаритные параметры коробки передач и осложняются условия управления ей.

Именно поэтому количество передач в коробке принимаем равным 5. С целью лучшего использования мощности ДВС передаточные числа коробки подбирают так, чтобы разгон на каждой передаче начинать при одинаковой скорости вращения коленчатого вала ДВС и заканчивать при скорости коленчатого вала, соответствующей максимальной мощности ДВС.

С учетом всех требований передаточные числа равны:

  •  (18)
  • 4. Тяговая характеристика автомобиля
  • Тяговой характеристикой называют зависимость силы тяги от скорости автомобиля на определенной передаче при полной подаче топлива.
  • При движении автомобиля на первой передаче при ne=585об/мин и Мe=179,28 Н*м со скоростью:
  • , (19)
  • сила тяги будет равна:
  • , (20)
  • Расчеты скоростей движения автомобиля на передачах ивеличины силы тяги РТ им соответствующие сводим в таблицу 2 и строим график тяговой характеристики (рисунок 2).
  • Таблица 2 — Скорости движения и сила тяги на передачах
Параметры Число оборотов коленчатого вала, об/мин
585 1000 1500 2500 3500 4500 5500
Ne, кВт 10,98 19,78 30,92 52,58 69,24 75,90 67,57
Me, Н*м 179,28 188,90 196,86 200,83 188,90 161,06 117,32
V1, км/ч 6,00 10,26 15,39 25,64 35,90 46,16 56,42
V2, км/ч 9,13 15,61 23,41 39,02 54,63 70,24 85,85
V3, км/ч 13,82 23,62 35,43 59,05 82,67 106,29 129,91
V4, км/ч 21,00 35,90 53,85 89,75 125,65 161,56 197,46
Pт1, Н; η1=0,9 5379,74 5668,46 5907,14 6026,47 5668,46 4833,11 3520,42
Pт2, Н; η1=0,91 3574,54 3766,38 3924,96 4004,26 3766,38 3211,33 2339,12
Pт3, Н; η1=0,92 2388,26 2516,44 2622,39 2675,37 2516,44 2145,59 1562,84
Pт4, Н; η1=0,93 1588,30 1673,55 1744,01 1779,24 1673,55 1426,92 1039,36
  1. Длины шкал чисел оборотов при движении на третьей, второй и первой передачах соответственно равны:
  2. ; ; ; (21)
  3. Рисунок 2 – Скоростные характеристика тяговой силы.

Устройство автомобилей



Оценить мощностные и экономические возможности двигателя внутреннего сгорания при работе его в различных эксплуатационных условиях можно по техническим и технологическим характеристикам, получаемым в результате различных испытаний – стендовых, дорожных, полигонных, эксплуатационных и т. п.

1 внешняя скоростная характеристика двигателя способы ее определения

Характеристикой двигателя называется зависимость основных показателей его работы (мощности, вращающего момента на выходном валу, расхода топлива) от одного из параметров режима работы (частоты вращения коленчатого вала, внешней нагрузки и т. п.). Характеристики двигателя определяют его эксплуатационные качества, уровень технического совершенства, правильность регулировок, а также его назначение.

  • Основные характеристики автомобильных двигателей определяются ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний»:
  • скоростная характеристика – зависимость основных эффективных показателей работы двигателя от частоты вращения его коленчатого вала;
  • коэффициент приспособляемости – способность двигателя преодолевать кратковременные перегрузки;
  • нагрузочные характеристики – зависимости удельного и часового расхода топлива от мощности, развиваемой двигателем;
  • характеристика холостого хода – зависимость часового расхода топлива от частоты вращения коленчатого вала при работе двигателя без нагрузки;
  • регулировочные характеристики – зависимость мощностных и экономических показателей работы от состава рабочей смеси, воспламеняемой в цилиндрах двигателя, угла опережения зажигания или впрыска, температуры двигателя и других регулируемых факторов.
  • ***

Нагрузочная характеристика

Нагрузочной характеристикой называется изменение часового и удельного расхода топлива в зависимости от величины нагрузки.

Работа на режимах нагрузочной характеристики наиболее характерна для двигателей, которые используются для привода электрических агрегатов, насосов, компрессоров, тракторов.

В частности, нагрузочная характеристика имитирует работу двигателя на автомобиле, при его движении с постоянной скоростью на одной из передач в условиях переменного сопротивления со стороны дороги.

1 внешняя скоростная характеристика двигателя способы ее определения

Цель получения нагрузочной характеристики – определение топливной экономичности двигателя.

Условия получения нагрузочной характеристики:

  • независимая переменная величина – нагрузка на двигатель (так как с увеличением нагрузки для ее преодоления двигатель должен увеличивать мощность Nе, среднее эффективное давление ре и крутящий момент Мк, то нагрузку выражают в процентах относительно одного из этих параметров;
  • постоянная величина – частота вращения коленчатого вала;
  • зависимые переменные величины – удельный расход топлива gе и часовой расход топлива Gt.
Читайте также:  Ваз 2112 начинает троить двигатель после 2500 оборотов

***

Скоростная характеристика

Скоростная характеристика двигателя представляет собой зависимость основных эффективных показателей его работы (эффективная мощность, вращающий момент на выходном валу, удельный и часовой расход топлива) от частоты вращения коленчатого вала при постоянной подаче топлива в цилиндры в установившемся тепловом режиме.

Различают внешнюю и частичные скоростные характеристики.

Скоростная характеристика, полученная при полной подаче топлива (полностью открытой дроссельной заслонке или соответствующем положении рейки топливного насоса дизеля) и при углах опережения зажигания или начала впрыскивания топлива по техническим условиям на двигатель, называется внешней скоростной характеристикой двигателя. Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках.

1 внешняя скоростная характеристика двигателя способы ее определения

Характеристики, соответствующие постоянным промежуточным положениям дроссельной заслонки или рейки топливного насоса, называются частичными скоростными характеристиками двигателя. Иными словами, любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой.

Скоростную характеристику реального двигателя строят по результатам стендовых испытаний. Вал работающего двигателя нагружают с помощью тормоза, обеспечивая фиксирование частоты вращения от минимально устойчивой до максимально допустимой. При этом на каждой частоте замеряют тормозной момент Мт в (Н×м) и часовой расход топлива в кг/ч.

  1. По результатам испытаний строят кривые зависимости эффективного вращающего момента и часового расхода топлива от частоты вращения вала двигателя. Затем, используя формулы:
  2. gе = GT/Pе = gi/ηM Mе = 3×104 Pе /πn
  3. находят эффективную мощность и удельный расход топлива, после чего отображают их графические зависимости.
  4. ***
  5. В зависимости от укомплектованности двигателя вспомогательными устройствами и оборудованием определяют мощность нетто (полная комплектация) или мощность брутто (неполная комплектация). Различают следующие характерные частоты вращения коленчатого вала:



  • минимальная частота вращения, при которой возможна устойчивая работа двигателя при полной подаче топлива;
  • частота вращения, соответствующая наибольшему вращающему моменту;
  • частота вращения, соответствующая наибольшей мощности двигателя;
  • наибольшая возможная частота вращения коленчатого вала, устанавливаемая ограничителем частоты вращения.

Характеристика холостого хода является частным случаем скоростной характеристики двигателя.

1 внешняя скоростная характеристика двигателя способы ее определения

Внешнюю скоростную характеристику вновь проектируемого двигателя можно построить по эмпирическим зависимостям, где максимальная мощность и соответствующие ей удельный расход топлива и частота вращения берутся из данных теплового расчета двигателя при его конструировании.

***

Приемистость и приспособляемость двигателя

Способность двигателя с ростом частоты вращения коленчатого вала наращивать мощность называется его приемистостью. Приемистость двигателя непосредственно влияет на приемистость автомобиля, т. е. его способности ускоряться и разгоняться.

Скоростная характеристика во многом отражает степень приемистости двигателя: чем круче кривая Nе, тем приемистость двигателя больше. Если сравнить скоростные характеристики карбюраторного двигателя и дизеля, то можно заметить, что кривая мощности Nе у дизеля круче, т. е.

дизель обладает большей приемистостью.

Способность двигателя с ростом внешней нагрузки сохранять частоту вращения коленчатого вала называется его приспособляемостью (самоприспособляемостью или эластичностью).

Например, затяжной подъем один из автомобилей может преодолеть без переключения КПП на пониженную передачу, а другой при таких же условиях заглохнет.

Следовательно, в первом случае приспособляемость двигателя автомобиля выше, чем во втором.

Приспособляемость автомобиля к изменению внешней нагрузки оценивается коэффициентом приспособляемости (коэффициентом самоприспособляемости). Чем больше значение этого коэффициента, тем лучше приспособляемость автомобиля к увеличению внешней нагрузки.

  • Устойчивость режима автомобильного двигателя к увеличению внешней нагрузки оценивают по запасу крутящего момента, который определяется отношением максимального крутящего момента Мкmax к крутящему моменту Мкном, развиваемому двигателем на номинальном режиме; это отношение и называют коэффициентом приспособляемости k.
  • Коэффициент приспособляемости k, характеризующий приспособляемость двигателя к изменению внешней нагрузки, может быть определен по формуле:
  • k = Mкmax/Mкном

В бензиновых двигателях средний коэффициент приспособляемости k = 1,25…1,35, в дизельных k = 1,05…1,2.

Поскольку коэффициент приспособляемости характеризует способность двигателя преодолевать кратковременные перегрузки без переключения передач, можно сделать вывод, что дизельные двигатели переносят изменение внешней нагрузки хуже, чем карбюраторные.

Чтобы преодолеть этот недостаток дизелей увеличивают размеры цилиндров, что приводит к увеличению крутящего момента, а также применяют всережимные регуляторы частоты вращения коленчатого вала.

***

Общее устройство двигателя



Главная страница

Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Специальности

Учебные дисциплины

Олимпиады и тесты

2.3.2. Скоростные характеристики

Скоростными характеристиками называются графические зависимости показателей работы ДВС (Ne, Ме, GT, и ge) от частоты вращения коленчатого вала nе.

В зависимости от комплектации двигателя, который испытывается на стенде, скоростные характеристики могут быть нормальными и нормально-эксплуатационными.

Для построения нормальной скоростной характеристики двигатель испытывается без вентилятора, воздушного фильтра, глушителя и генератора.

Нормально-эксплуатационная характеристика снимается с двигателя с полным комплектом всех приборов.

  • Наибольшее практическое значение имеют внешние и частичные скоростные характеристики.
  • Внешней скоростной характеристикой двигателя называется графическая зависимость эффективной мощности Ne, эффективного вращающего момента Ме, часового GT и удельного эффективного ge расходов топлива от частоты вращения nе коленчатого вала при полной подаче топлива.
  • Частичной скоростной характеристикой двигателя называется характеристика, полученная при частичной подаче топлива.

На рис. 2.9 приведена внешняя скоростная характеристика бензинового двигателя, а на рис. 2.10 — такая же характеристика дизеля.

1 внешняя скоростная характеристика двигателя способы ее определения

Рис. 2.9. Внешняя скоростная характеристика бензинового ДВС (ЗИЛ-508.10) (пунктиром показана частичная скоростная характеристика): Ne — эффективная мощность; nе — эффективная частота вращения коленчатого вала; Ме — эффективный вращающий момент; GT — часовой расход топлива; удельный эффективный расход топлива

1 внешняя скоростная характеристика двигателя способы ее определения

Рис. 2.10. Внешняя скоростная характеристика дизеля ЯМЗ-236: Ne — эффективная мощность; nе — частота вращения коленчатого вала при полной подаче топлива; Ме — эффективный вращающий момент; GT — часовой расход топлива; ge — удельный эффективный расход топлива

  1. На внешней скоростной характеристике двигателя важнейшими являются режимы при частотах вращения коленчатого вала nmin nMmax neн ng
  2. Частота nmin соответствует режиму, при котором двигатель устойчиво работает с полной нагрузкой.
  3. Частота nMmax соответствует максимальному вращающему моменту Mmax или максимальному эффективному давлению ре.
  4. Частота nен соответствует номинальной эффективной мощности двигателя Ne, которую гарантирует завод-изготовитель для определенных условий эксплуатации.

При частоте ng двигатель имеет наиболее экономичный режим работы, т.е. наименьший удельный эффективный расход топлива ge.

Максимальная частота вращения коленчатого вала, которую может развить двигатель без регулятора, называется разносной, так как на такой скоростной режим его детали не рассчитаны.

Читайте также:  Ваз 2108 акула какой двигатель

В этом случае вся индикаторная мощность двигателя расходуется на трение и привод собственных механизмов, систем и агрегатов.

Такая скорость вращения коленчатого вала ограничивается соответствующим регулятором частоты вращения.

Основные параметры работы двигателя1 связаны зависимостью

1 внешняя скоростная характеристика двигателя способы ее определения

где Ne — эффективная мощность, кВт; Ме — эффективный вращающий момент, Н*м; пе — частота вращения коленчатого вала при полной подаче топлива, мин-1; 9 555 — числовой коэффициент.

1 Для приведения внесистемных единиц измерения мощности и работы к Международной системе единиц необходимо введение следующих коэффициентов пересчета: 1 л. с. = 736 Вт = 0,736 кВт = 736 Н*м/с. 1 кгс м = 9,81 Н*м = 9,81 Дж. Единица силы 1 Н = 1 кгс м/с2; единица мощности 1 Вт = 1 Н*м/с = 1 Дж/с; единица количества теплоты 1 Дж = 1 Вт*с = 2,78 10-4 Вт ч.

С увеличением частоты вращения коленчатого вала пе пропорционально растет эффективная мощность, так как мощность — это произведение частоты и вращающего момента, который пропорционален среднему эффективному давлению.

Вначале эффективная мощность растет практически линейно в соответствии с увеличением частоты и среднего эффективного давления, затем среднее эффективное давление, достигнув максимума, начинает уменьшаться, и темп роста эффективной мощности снижается. Максимумы эффективной мощности и вращающего момента достигаются при разных скоростях вращения коленчатого вала.

Минимальный удельный эффективный расход топлива приходится на частоты между максимальными значениями вращающего момента и эффективной мощности.

Коэффициентом приспособляемости двигателя K называется отношение максимального вращающего момента Mmax к величине вращающего момента Мном при номинальной мощности:

1 внешняя скоростная характеристика двигателя способы ее определения

Коэффициент K является важной характеристикой эффективности двигателя, так как он показывает приспособленность двигателя преодолевать временные повышенные нагрузки за счет увеличения вращающего момента при снижении частоты вращения коленчатого вала. На транспортных машинах благодаря такой способности двигателя возможно преодоление возросших сопротивлений движению без переключения передач.

Значения коэффициента приспособляемости следующие: для дизелей к = 1,05… 1,15, для бензиновых двигателей к = 1,2… 1,4.

Увеличение коэффициента приспособляемости дизеля является наиболее значимым способом повышения его эффективности.

Двигатели с большим значением коэффициента приспособляемости получили название двигателей постоянной мощности (ДПМ), так как они в широком диапазоне частоты вращения коленчатого вала имеют незначительно изменяющееся значение эффективной мощности. В этом случае снижающаяся частота вращения коленчатого вала компенсируется существенным повышением вращающего момента.

Для реализации режима постоянной мощности необходимо дизель с наддувом оснастить устройством промежуточного охлаждения наддувного воздуха, чтобы увеличить коэффициент наполнения цилиндра, и отрегулировать топливный насос высокого давления на цикловую подачу топлива, обеспечивающую наиболее полное его сгорание при данном коэффициенте наполнения. При этом часовой расход топлива несколько вырастет, но удельный эффективный расход топлива снизится.

Что такое мощность двигателя, крутящий момент и удельный расход топлива

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении.

При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками.

В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Основные показатели двигателя

Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

Основные характеристики ДВС можно оценить тремя основными показателями:

  • мощность двигателя;
  • крутящий момент;
  • расход топлива.

1 внешняя скоростная характеристика двигателя способы ее определенияОсновные показатели ДВС

Рассмотрим более подробно каждый из этих показателей.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Чем больше мощность, тем большую скорость сможет развить автомобиль.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Эффективная мощность двигателя будет всегда ниже индикаторной.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда.

Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя.

Для более точного результата может понадобиться несколько попыток.

Что такое крутящий момент

Крутящий момент двигателя рассчитывается по формуле: M = F*R, где F – это сила, с которой давит поршень, R – длина плеча (рычага). В нашем случае плечом будет расстояние от оси вращения коленчатого вала до места крепления шатунной шейки. Этот параметр измеряется в ньютонах на метр (Hм). 1H соответствует 0,1 кг, который давит на конец рычага длиной в метр.

Крутящий момент ДВС характеризует показатель силы вращения коленчатого вала и определяет динамику разгона автомобиля.

Что такое расход (удельный расход) топлива

Удельный расход топлива двигателя – это количество топлива, затрачиваемое для производства определенного количества энергии. Чем расход ниже, тем рациональнее будет использоваться топливо. Расход связан с эффективностью двигателя. Один двигатель может иметь разный расход топлива в зависимости от скорости и нагрузки.

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

Читайте также:  Датчик холостого хода мерседес 124 103 двигатель

1 внешняя скоростная характеристика двигателя способы ее определенияВнешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива.

Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад.

В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

  • Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
  • Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
  • Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
  • Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
  • При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.

(4

Снятие внешней скоростной характеристики двигателей и ее анализ

1 внешняя скоростная характеристика двигателя способы ее определения

Снятие внешней скоростной характеристики двигателей и ее анализ. Характеристиками принято называть графическое отображение зависимости одного, а

Чаще нескольких показателей работы двигателя от величины параметра, принятого за аргумент исследования.

К типовым характеристикам обычно относятся скоростные и нагрузочные. На практике снимаются также регуляторные характеристики, характеристики холостого хода и др. Такие характеристики снимают в соответствии с ГОСТ (например, ГОСТ 18509–73 на тракторные дизели).

На этапе доводочных испытаний обычно снимают ещё регулировочные характеристики (например, по углу опережения впрыска топлива, по углу опережения открытия выпускного клапана, по углу опережения открытия впускного клапана и др.).

  • Скоростной характеристикой называют графическую зависимость основных технико-экономических параметров, таких как:
  • — среднее эффективное давление ре,
  • — полный Gе и удельный ge расходы топлива,
  • — крутящий момент Mкр, коэффициент избытка воздуха α
  • — и другие от числа оборотов n его вала при некоторой постоянной нагрузке Ne двигателя.
  • При этом скоростная характеристика, снятая при максимально возможной подаче топлива в цилиндр (Ne = Nmax) называется внешней, а снятые при некоторой частичной подаче (например, при Ne = 0,75Ne max) – частными.

Согласно ГОСТ, внешнюю скоростную характеристику снимают в диапазоне чисел оборотов от nmin до nmax. Разновидностью частичной скоростной характеристики можно считать характеристику холостого хода, которая показывает изменение основных параметров работы машины при отсутствии внешней нагрузки.

Характеристики, показывающие как изменяются основные параметры машины при заданном постоянном числе оборотов n в зависимости от изменения внешней нагрузки Ne, называют нагрузочными. Здесь в качестве независимой переменной в соответствии с ГОСТ принимается эффективная мощность Nе, а число оборотов берётся некоторым фиксированным (например, n = nном).

Регуляторные характеристики снимают при таком скоростном режиме, который соответствует максимальному крутящему моменту maxкр M .

При постоянном положении органа управления двигателя постепенно увеличивают нагрузку от холостого хода до максимальной.

Если регулятор установлен на частичную подачу, то получают частичную регуляторную характеристику, если на полную – то предельную регуляторную характеристику.

Регулировочная характеристика показывает, как изменяются основные показатели машины при изменении одного из регулировочных параметров, например, угла опережения впрыска топлива. Результаты проводимых при этом исследований позволяют выбрать

Оптимальное значение регулировочного параметра, ориентируясь, смотря по обстоятельствам, или на развиваемую мощность, или на удельный расход топлива, или на величину крутящего момента.

Скоростные характеристики служат для оценки экономических и энергетических показателей работы двигателя при различных частотах вращения. Эти показатели определяют тяговые, динамические и другие эксплуатационные качества автомобилей.

Скоростной характеристикой бензинового двигателя называется зависимость мощности N e , крутящего момента M к , часового G t и удельного g e расхода топлива, а также других показателей работы двигателя от частоты вращения коленчатого вала при постоянном положении органа управления подачей топлива.

  1. Различают скоростную характеристику при полной подаче топлива, которая называется внешней характеристикой, и скоростные частичные характеристики, определяемые при промежуточных, но постоянных положениях органа управления подачей топлива.
  2. Скоростные характеристики снимают в диапазоне от минимально устойчивой частоты вращения коленчатого вала (n min ) до частоты вращения на 10 % превышающей номинальную (1,1n ном ).
  3. При определении скоростной характеристики должны быть выявлены точки, соответствующие минимальной рабочей частоте вращения (n min ), номинальной частоте вращения (n ном ), частоте вращения при максимальном крутящем моменте (n Мкmax ) и минимальном удельном расходе (n gеmin ).
  4. С увеличением частоты вращения выше n min крутящий момент двигателя возрастает и достигает максимальных значений при частоте n Мкmax.
  5. Причиной этого увеличения M к является улучшение процесса смесеобразования и снижение относительных потерь теплоты от газов в стенки в течение рабочего цикла. При дальнейшем увеличении частоты вращения M к уменьшается, что связано главным образом со значительным увеличением механических потерь (снижением механического КПД η M

Эффективная мощность, пропорциональная произведению M к ∙n, достигает своего максимума при более высокой частоте вращения (n ном ), чем крутящий момент. Для автомобильных двигателей значение n Мкmax = (0,5…0,6)n ном .

При неизменном положении органа управления подачей топлива с ростом частоты вращения растет часовой расход топлива (G t ). Некоторое замедление роста G t при большой частоте вращения связано с уменьшением коэффициента наполнения.

Обычно минимальная величина удельного расхода топлива g e по скоростной внешней характеристике наблюдается в зоне средних частот вращения.

Увеличение g e с уменьшением частоты вращения объясняется, в основном, возрастанием тепловых потерь и ухудшением процесса смесеобразования.

С увеличением частоты вращения g e возрастает из-за увеличения механических потерь и соответствующего снижения η M .

Ссылка на основную публикацию
Adblock
detector