Двигатель асинхронный в кинематической схеме

  • В электротехнике асинхронный двигатель является вращающейся электрической машиной для переменного тока.
  • Асинхронный двигатель использует вращающееся магнитное поле, генерируемое в статоре, для создания крутящего момента, чтобы вызвать электрический ток в роторе (передача энергии за счет электромагнитной индукции), и поэтому он должен иметь скорость немного ниже (выше для асинхронного генератора), чем скорость вращающегося магнитного поля (так называемое скольжение).
  • Большая разница по сравнению с двигателями постоянного тока и синхронными двигателями заключается в том, что на ротор не подается ток, а переменный ток проходит только через обмотку статора.

Трехфазный асинхронный двигатель — самый распространенный электродвигатель в мире, потому что он простой, экономичный, не требует обслуживания, вращается без дополнительных вспомогательных средств (в варианте с короткозамкнутым ротором во время его работы не возникает искр, поэтому он подходит для взрывоопасных сред, таких как шахты, газовые приборы и т. д.).

Двигатель асинхронный в кинематической схеме

Однофазные варианты используются для более низких мощностей. Хотя они традиционно используются для работы на постоянной скорости, в настоящее время они используются с частотными преобразователями на разных скоростях (обычно для экономии электроэнергии).

Благодаря простой конструкции, прочности и возможности неискрящей конструкции, этот тип двигателя является наиболее распространенным на практике, он используется во многих областях промышленности, транспорта и домашнего хозяйства. Мощность асинхронных двигателей колеблется от нескольких ватт до многих сотен киловатт.

Два наиболее распространенных типа асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором.

Первые асинхронные двигатели были построены независимо несколькими изобретателями:

  • В 1887 году Никола Тесла подал патент на асинхронную машину, 5 мая следующего года — еще пять патентов.
  • В то же время Галилео Феррарис опубликовал трактат о вращающихся машинах.
  • В 1889 году Михаил Осипович Доливо-Добровольский изобрел первый трехфазный асинхронный двигатель с короткозамкнутым ротором

Двигатель асинхронный в кинематической схеме

  1. Асинхронный двигатель General Electric, 25 лошадиных сил, 60 гц, 220 вольт, 70 ампер, 1911 год
  2. Устройство
  3. Каждый трехфазный асинхронный двигатель состоит из двух основных частей.

Статор (неподвижная часть) — аналогичен для большинства типов. Он состоит из опорной рамы двигателя, подшипниковых щитов, фланца, ножек, набора пластин статора с вставленной в пазы обмотки статора.

Ротор (вращающаяся часть) — вал с запрессованными роторными (электротехническими) листами с пазами, в которые вставляются стержни обоймы ротора или проводники обмотки ротора. В пазы ротора вставляются голые медные, латунные или алюминиевые стержни, которые с обоих концов соединены короткозамыкающим кольцом.

Стержни с кольцами в виде «беличьей клетки». Клетка сваривается или отливается методом литья под давлением алюминия.

Кольцевой якорь в двигателе с фазным ротором — в пазы листов помещается обмотка ротора из изолированных проводов, которая соединяется звездой или треугольником. Обмотка ротора соединена с тремя кольцами. На кольца опираются три кольца угольных щеток, к которым может быть подключена цепь регулирующего ротора, чаще всего резисторы.

Двигатель асинхронный в кинематической схеме

Конструкция трехфазного асинхронного двигателя

Двигатель асинхронный в кинематической схеме

  • Обмотки статора трехфазного асинхронного двигателя
  • Принцип работы
  • В основе работы асинхронной машины лежит создание вращающегося магнитного поля статора, которое создается за счет прохождения переменного трехфазного тока через обмотку статора.

Это магнитное поле индуцирует напряжение в обмотке ротора, а ток, генерируемый обмоткой ротора, индуцирует магнитный поток, который передается на статор. Связанный магнитный поток вызывает силу, действующую на ротор, и, следовательно, вращение ротора.

Скорость вращающегося поля статора, то есть синхронная скорость, определяется частотой напряжения питания и числом полюсов двигателя:

Двигатель асинхронный в кинематической схеме

f — это текущая частота и p — количество пар полюсов (т.е. p: 1 = двухполюсный, 2 = четырехполюсный, 3 = шестиполюсный, 4 = восьмиполюсный и т. д.).

  1. Скольжение
  2. Асинхронная машина может прикладывать крутящий момент к выходному валу только в том случае, если скорость вращения магнитного поля статора отличается от механической скорости ротора из-за так называемого скольжения.
  3. При ненулевом скольжении магнитный поток статора, связанный с потоком ротора, движется относительно ротора, переменный (переменный) связанный магнитный поток статора и ротора протекает через ротор, в обмотке ротора индуцируется напряжение, ток ротора потоков, роторная часть связанного магнитного потока машины отлична от нуля и крутящего момента.

Частота обмотки статора определяется частотой сети. Частота магнитного потока ротора и обмотки ротора отлична от нуля, определяется скольжением и отличается от частоты обмотки статора. Скольжение указывается в процентах и ​​определяется как:

Двигатель асинхронный в кинематической схеме

где, ns — «синхронная» скорость магнитного поля статора, n — механическая скорость ротора.

Номинальная скорость двигателя — это скорость, включая номинальное скольжение двигателя (оба значения указаны на паспортной табличке двигателя).

При нулевом скольжении, то есть при синхронной скорости машины, связанный магнитный поток статора и ротора не перемещается относительно ротора. Напряжение в обмотке ротора не индуцируется, ток ротора не течет, и крутящий момент не создается.

Крутящий момент

Крутящий момент обычного асинхронного двигателя с короткозамкнутым ротром задается в установившемся состоянии так называемым соотношением Клосса. Устойчивое состояние возникает после исчезновения переходных процессов, вызванных быстрыми изменениями нагрузки или источника питания машины.

Двигатель асинхронный в кинематической схеме

  • Где, Мmax — максимальный крутящий момент (не путать с номинальным) и Sz — скольжение при максимальном крутящем моменте.
  • Максимальный крутящий момент асинхронной машины пропорционален квадрату напряжения питания.
  • Пуск

При пуске асинхронного двигателя с короткозамкнутым ротором пусковой ток до 7 раз превышает значение номинального тока. Это создает большие скачки тока в сети при относительно небольшом крутящем моменте включения, поэтому прямой пуск обычно применяется только для двигателей мощностью около 3 кВт.

Уменьшение большого пускового тока асинхронного двигателя может быть достигнуто за счет уменьшения пускового напряжения статора.

Полупроводниковый регулятор напряжения (устройство плавного пуска двигателя) — это полупроводниковый регулятор напряжения двигателя с низкими потерями, при котором может быть достигнут плавный пуск двигателя.

Устройство плавного пуска не изменяет скорость двигателя, оно изменяет скольжение двигателя. Устройство плавного пуска также может использоваться для управления скоростью вентилятора и аналогичных нагрузок с квадратичной зависимостью мощности от скорости.

Двигатель асинхронный в кинематической схеме

Двигатель каменной мельницы на золотом руднике Санрайз Дам (в Западной Австралии). Это асинхронный двигатель Alstom 11000 В — 4000 кВт, произведенный в Нанси (Франция).

Двигатели с фазным ротором

Пускатель ротора подключается к кольцам ротора с помощью щеток, обычно состоящих из трех резисторов одинакового размера, которые постепенно устраняются. В конце пуска обмотка замыкается накоротко.

Кольцевой якорь в двигателе с фазным ротром предназначен для ограничения пусковых токов статора, а также для увеличения пускового момента при пуске. Такой способ пуска двигателя не изменяет его скорость, он изменяет скольжение двигателя.

Асинхронный двигатель как элемент системы управления

Двигатель асинхронный в кинематической схеме

Рис. 3.25.Структурная схема асинхронного двигателя

При исследовании переходных процессов в электроприводах с асинхронными двигателями можно использовать структурную, представленную на рис. 3.25.

Структурная схема соответствует системе уравнений

Двигатель асинхронный в кинематической схеме Двигатель асинхронный в кинематической схеме

в которой первое уравнение описывает линейную механическую характеристику асинхронного двигателя в рабочей зоне 0 ≤ S, а второе уравнение представляет собой жесткое приведенное механическое звено.

Читайте также:  Ауди при движении падает температура двигателя

Структурная схема удовлетворительно описывает переходные процессы в асинхронном двигателе при питании его от источника напряжения и источника тока.

В структурной схеме на рис. 3.25 и в (3.46):

синхронная скорость

электромагнитная постоянная времени

Двигатель асинхронный в кинематической схеме

где ωэл.ном – скорость вращения магнитного поля при номинальной частоте f1 = f1ном и р = 1;

β – модуль жесткости линеаризованной механической характеристики

где ωном – скорость вращения магнитного поля при f1 = f1ном.

Электромагнитная постоянная времени и модуль жесткости механической характеристики при питании от источника напряжения и источника тока имеют различные значения. Связано это с различными значениями MK и SK при питании от источника напряжения и источника тока.

При питании от источника напряжения

Двигатель асинхронный в кинематической схеме Двигатель асинхронный в кинематической схеме

При питании от источника тока

Двигатель асинхронный в кинематической схеме Двигатель асинхронный в кинематической схеме

  • где I1ном – номинальный ток двигателя;
  • хμн, х'2н, R'2 – соответственно индуктивное сопротивление цепи намагничивания, индуктивное и активное приведенные сопротивления ротора при номинальной скорости вращения магнитного поля ωном.
  • Различия в значениях MK и SK соответственно дают различные значения ТЭ и β при питании от источников напряжения и тока, следовательно будут различия в протекании переходных процессов.

Передаточная функция асинхронного двигателя по управляющему воздействию (рис. 3.25)

  1. , (3.48)
  2. где – электромеханическая постоянная времени.
  3. Передаточная функция по возмущающему воздействию (при ω0 = 0)

. (3.49)

Характер переходного процесса в электромеханической части электропривода с асинхронным двигателем определится видом корней характеристического уравнения

(3.50)

Если ТМ ≥ 4·ТЭ, корни уравнения (3.50) будут действительные отрицательные р1 = -a; р2 = -b, и передаточная функция (3.48) может быть представлена апериодическим звеном второго порядка:

  • , (3.51)
  • где ; .
  • При ТМ < 4·ТЭ корни характеристического уравнения будут комплексно-сопряженными с отрицательной действительной частью
  • ,
  • и передаточная функция (3.48) может быть представлена колебательным звеном
  • , (3.52)
  • где ;
  • ;
  • .

Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Двигатель асинхронный в кинематической схеме

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение.

Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель — это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный.

При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

  • Двигатель асинхронный в кинематической схеме
  • На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.
  • Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Двигатель асинхронный в кинематической схеме

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали.

В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«.

В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Двигатель асинхронный в кинематической схеме

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам.

С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов.

Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Двигатель асинхронный в кинематической схеме

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС.

Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.Двигатель асинхронный в кинематической схеме

Скольжение это крайне важная величина.

В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента.

В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения.

Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

1 1 1 1 1 1 1 1 1 1 4.60 (460 Голоса)

Асинхронный двигатель: конструкция, применение, принцип работы

Среди устройств, преобразующих электрическую энергию в механическую, несомненным лидером является трехфазный асинхронный двигатель – простой и надежный в эксплуатации агрегат.

Благодаря своим качествам, он получил широкое применение в промышленности и других областях, где используются механизмы. Название двигателя связано с основным принципом его работы.

У этих устройств магнитное поле статора вращается с частотой, превышающей частоту вращения ротора. Работа агрегата осуществляется от сети переменного тока.

Читайте также:  В чем отличие дизельный двигатель от карбюраторного

Где применяются

Асинхронные двигатели активно используются во многих отраслях промышленности и сельского хозяйства.

Они потребляют примерно 70% всей энергии, предназначенной для преобразования электричества во вращательное или поступательное движение.

Асинхронные двигатели зарекомендовали себя наиболее эффективными в качестве электрической тяги, без которой не обходятся многие технологические операции.

Асинхронные двигатели обладают множеством положительных качеств. Простая конструкция позволяет изготавливать наиболее дешевые и надежные устройства. Минимальные расходы по эксплуатации обеспечиваются отсутствием скользящего узла токосъема, что одновременно повышает и надежность агрегата. Двигатель асинхронный в кинематической схеме Данный тип электродвигателей может быть трехфазным или однофазным, в зависимости от количества питающих фаз. В случае необходимости и при соблюдении определенных условий, трехфазный агрегат может питаться и работать от однофазной сети. Эти устройства применяются не только в промышленности, но и в бытовых условиях, а также на садовых участках или домашних мастерских. Однофазные двигатели обеспечивают работу и вращение вентиляторов, стиральных машин, небольших станков, водяных насосов и электроинструмента.

Для нормального действия асинхронного агрегата необходимо выбирать наиболее рациональную схему управления. Трехфазный двигатель будет работать в однофазном режиме при условии правильного расчета конденсаторов, выбора типа и сечения проводов, аппаратуры защиты и управления.

Коллекторный двигатель: устройство и подключение

Устройство асинхронного двигателя

Понятие асинхронный означает не совпадающий по времени, неодновременный. В связи с этим, ротор такого двигателя вращается с частотой, меньшей чем частота вращения электромагнитного поля статора.

Двигатель асинхронный в кинематической схеме

Подобное отставание называется скольжением и обозначается символом S в формуле, применяемой для расчетов:

  • S = (n1 – n2)/n1 – 100%, где n1 является синхронной частотой магнитного поля статора, а n2 – частотой вращения вала.

Конструктивно, стандартный асинхронный электродвигатель включает в себя следующие элементы и детали:

  • Статор с обмотками. Эту функцию также может выполнять станина, внутри которой помещается статор с обмотками.
  • Короткозамкнутый ротор. Если используется фазный – он может называться якорем или коллектором.
  • Подшипники различного типа – качения или скольжения. На двигателях повышенной мощности в передней части установлены крышки для подшипников с уплотнениями.
  • Металлический или пластмассовый охлаждающий вентилятор, помещенный в кожух с прорезями для подачи воздуха.
  • Подключение кабелей осуществляется с помощью клеммной коробки.

Данные конструктивные элементы могут незначительно изменяться, в зависимости от модификации электродвигателя.

Как уже отмечалось, асинхронные двигатели бывают трехфазными или однофазными. Первый вариант, в свою очередь, выпускается с короткозамкнутым или фазным ротором. Наибольшее распространение получили трехфазные асинхронные электродвигатели с короткозамкнутым ротором, поэтому их следует рассмотреть более подробно.

Двигатель асинхронный в кинематической схеме

Статор обладает круглой формой и собирается из специальных стальных листов, изолированных между собой. В результате, конструктивно образуется сердечник с пазами, в которые укладываются обмотки.

Для этих целей используется обмоточный медный провод, изолированный лаком. В мощных агрегатах обмотки делаются в виде шины. При укладке они сдвигаются между собой на 120 градусов.

Соединение осуществляется по схеме звезды или треугольника.

Конструкция самого короткозамкнутого ротора изготавливается в виде вала с надетыми на него стальными листами. Этот набор листов образует сердечник с пазами, заливаемые расплавленным алюминием. Равномерно растекаясь по пазам, алюминий образует стержни, края которых замыкают алюминиевые кольца.

Тяговый электродвигатель: назначение и применениеДвигатель асинхронный в кинематической схеме

Фазный ротор состоит из вала с сердечником и трех обмоток. С одного конца они соединяются звездой, а с другого – соединяются с токосъемными кольцами, на которые с помощью щеток подается электрический ток. Во время запуска образуется большой пусковой ток асинхронного двигателя. Его можно уменьшить путем добавления к фазным обмоткам нагрузочного реостата.

Принцип работы

Устройство и конструктивные особенности асинхронного двигателя определяют и принцип действия данного агрегата. Когда на обмотку статора подается напряжение, в ней образуется магнитное поле.

Такая подача напряжения приводит к изменениям магнитного потока и всего магнитного поля статора. Измененные магнитные потоки поступают к ротору, приводят его в действие, после чего он начинает вращаться.

Для того чтобы статор и ротор работали асинхронно, требуется, чтобы значения напряжения и магнитного потока были равны переменному току, используемому в качестве источника питания.

Двигатель асинхронный в кинематической схеме

Сам двигатель работает следующим образом:

  • Вращающееся магнитное поле воздействует на короткозамкнутую обмотку, специально приспособленную для вращения.
  • Поле пересекает проводники роторной обмотки, индуктируя в них электродвижущую силу.
  • Под воздействием силы в проводниках ротора начнется течение электрического тока, взаимодействующего с вращающимся магнитным полем. Это приводит к появлению электромагнитных сил, воздействующих на обмотку ротора.
  • В сумме, действия приложенных сил вызывают появление вращающего момента, приводящего во вращение ротор в направлении магнитного поля.

Величина индуктированной ЭДС зависит от частоты пересечения проводников вращающимся магнитным полем. То есть, чем выше разница между n1 и n2, тем больше будет величина ЭДС. Ротор будет вращаться с частотой n2, которая всегда будет отставать от синхронной частоты поля статора n1.

Эта разница между обеими частотами и будет частотой скольжения ∆n= n1- n2. Данное неравенство является необходимым условием появления электромагнитного вращающегося момента в асинхронном двигателе.

Поэтому агрегат так и называется, поскольку вращение ротора происходит несинхронно с полем статора.

Как проверить якорь электродвигателя

Что такое скольжение

Понятие скольжения представляет собой отношение частоты вращения к частоте поля. Данная величина S берется в процентном отношении от частоты вращения магнитного поля. В соответствии с формулой, рассмотренной ранее, частота вращения ротора, определяемая с помощью скольжения составит: n2 = n1 x (1 – S).

Двигатель асинхронный в кинематической схеме

Ротор асинхронного двигателя вращается в том же направлении, что и его магнитное поле. В свою очередь, направление вращения поля зависит от последовательности фаз трехфазной сети.

Изменить направление вращения ротора возможно за счет изменения направления вращения поля, создаваемого статором. В этом случае изменяется порядок поступления импульсов тока к отдельным обмоткам.

В случае необходимости может быть задано вращение по часовой или против часовой стрелки.

Важным моментом считается пуск асинхронного двигателя, при котором происходит пересечение обмотки ротора вращающимся магнитным полем. В результате, индуктируется большая ЭДС, создающая высокий пусковой ток.

Подобное состояние компенсируется специальной нагрузкой, снижающей скорость вращения ротора.

Асинхронные электродвигатели: схема, принцип работы и устройство

Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора.

Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится.

Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают). 

В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.

Читайте также:  Двигатель ваз 21011 сколько лошадиных сил

Устройство и принцип действия

Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.

Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.

Двигатель асинхронный в кинематической схеме

Асинхронный двигатель

Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.

Виды асинхронных двигателей

  • Можно выделить 3 базовых типа асинхронных электродвигателей:
  • Двигатель асинхронный в кинематической схеме
  • Схема устройства асинхронного двигателя с короткозамкнутым ротором

То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.

Ещё одна разновидность – асинхронный двигатель с массивным ротором.

Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки).

Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.

Какой ротор лучше, фазный или короткозамкнутый?

  1. Преимущества короткозамкнутого:
  2. Недостатки:
  3. Преимущества фазного:
  4. Недостатки:

Какой двигатель лучше выбрать?

Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.

Тем не менее, у асинхроников есть недостатки. А именно:

Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.

Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:

  • Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:
  • Как избежать снижения КПД?
  • Для этого используются:

Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.

Асинхронные электродвигатели Двигатель асинхронный в кинематической схеме

Асинхронный электродвигатель: принцип работы и устройство

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века.

Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом.

Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл.

В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Ссылка на основную публикацию
Adblock
detector