Изучение схемы управления асинхронным двигателем

Основная функция автоматического управления электроприводом — запуск электродвигателя, остановка, торможение, реверсирование, поворот на определенный угол механизма в зависимости от времени или пути.

В практике управления электроприводами известно большое количество схем, которые отражают многообразие требований, предъявляемых к электроприводу различных производственных машин.

Однако различия в схемах часто не являются принципиальными, так как даже самые сложные из них представляют собой сочетание некоторого ограниченного числа стандартных узлов и простейших цепей, связывающих эти узлы.

1. Управление включением асинхронных электродвигателей с короткозамкнутым ротором

Схема управления с помощью магнитного пускателя (рис. 1). Магнитные пускатели широко применяют для пуска асинхронных электродвигателей мощностью до 75 кВт.

Они обеспечивают дистанционный пуск, остановку, нулевую защиту и, с помощью теплового реле, защиту от перегрузок двигателя.

При нажатии кнопки «Пуск» главные контакты ПМ включают двигатель; блок — контакты ПМ шунтируют кнопку «Пуск»; для отключения нужно нажать кнопку «Стоп».

Схема управления с помощью реверсивного магнитного пускателя (рис. 2).

В тех случаях, когда в процессе работы необходимо изменять направление вращения электродвигателя, применяют реверсивные магнитные пускатели.

Такой пускатель состоит из двух нереверсивных, помещенных в один кожух и имеющих блокировку (размыкающие контакты Н и В) от возможности одновременного включения главных контактов в цепи двигателя.

Для лучшей блокировки от возможности одновременного включения обеих пускателей применяются кнопки с нормально замкнутыми и нормально разомкнутыми контактами. При нажатии кнопки «Вперед» одновременно размыкаются контакты «Назад» (рис. 3).

Схема управления с динамическим торможением (рис. 4). Для быстрого торможения в обмотку статора подается постоянный ток. При нажатии кнопки «Стоп» отключается контактор П и включается контактор Т. С последним связано маятниковое реле, которое с выдержкой времени размыкает свой размыкающий контакт. Контактор Т отключает питание двигателя постоянным током.

Схема управления с переключением при пуске обмотки со «звезды» на «треугольник» (рис. 5). При нажатии кнопки «Пуск» включается линейный контактор КЛ и получает питание катушка реле времени РВ, размыкающий блок-контакт которого включает катушку контактора К3.

Изучение схемы управления асинхронным двигателем

Рис. 1. Схема управления асинхронным электродвигателем при помощи магнитного пускателя

Изучение схемы управления асинхронным двигателем

Рис. 2. Схема управления асинхронным электродвигателем при помощи реверсивного магнитного пускателя

Изучение схемы управления асинхронным двигателем

Рис. 3. Схема управления реверсивным пускателем с блокировочными кнопками

Изучение схемы управления асинхронным двигателем

Рис. 4. Схема управления асинхронным электродвигателем с динамическим торможением

При этом размыкается блок-контакт К3 в цепи катушки КТ. Двигатель разгоняется при включении обмоток цепи в «звезду».

Через 5—10 с (в зависимости от установленной выдержки времени) размыкается замыкающий контакт реле времени РВ. Это приводит к отключению контактора К3 и включению контактора КТ.

Одновременное включение контакторов К3 и КТ исключается размыкающим блок-контактом К3.

Изучение схемы управления асинхронным двигателем

Рис. 5. Схема управления асинхронным электродвигателем с переключением при пуске обмотки статора со «звезды» на «треугольник»

Изучение схемы управления асинхронным двигателем

Рис. 6. Электрическая схема управления двухскоростным асинхронным электродвигателем

Схема управления двухскоростным асинхронным электродвигателем (рис. 6). Конструкция многоскоростного асинхронного электродвигателя позволяет изменять число полюсов обмотки статора. Изменение числа пар полюсов меняет скорость вращения асинхронного электродвигателя.

Для производственных механизмов, требующих две скорости вращения, отличающиеся в два раза, применяют двухскоростные асинхронные электродвигатели. Нажимая кнопку «Пуск», включают контактор К, который своими главными контактами подготавливает цепь включения статора двигателя.

Воздействуя на кнопку

«Пуск медленно», включают контактор , который подключает обмотку статора, соединенную в треугольник. Если необходимо увеличить скорость, нажимают кнопку «Пуск быстро». Образуется замкнутая цепь питания параллельно включенных катушек и 3К. При этом число пар полюсов уменьшается вдвое, и электродвигатель вращается с большей скоростью.

Схема управления реверсивным двухскоростным электродвигателем (рис. 7). Нажатием кнопок «Пуск 1» или «Пуск 2» устанавливают необходимую частоту вращения при соединениях обмоток двигателя в «треугольник» или в «двойную звезду». Контакторы В или Н включаются нажатием кнопок

«Пуск вперед» или «Пуск назад». Двухцепные кнопки позволяют осуществить дополнительную блокировку, исключающую одновременное включение контакторов В, Н и 1К, 2К.

Торможение асинхронного электродвигателя противовключением (рис. 8). При торможении противовключением электродвигатель включается на время торможения в сеть с соединением обмоток статора с противоположным направлением вращения. При этом необходимо, чтобы двигатель отключился от сети в момент достижения скорости вращения, близкой к нулю.

Изучение схемы управления асинхронным двигателем

Рис. 7. Схема управления реверсивным двухскоростным электродвигателем

Изучение схемы управления асинхронным двигателем

Рис. 8. Торможение асинхронного короткозамкнутого электродвигателя противовключением

Для этого в цепь катушки контактора включены замыкающие контакты реле контроля скорости РС, работающего от вала двигателя. При работе двигателя эти контакты замкнуты, а размыкающие контакты контактора разомкнуты и контактор торможения отключен.

В режиме торможения, когда нажата кнопка «Стоп», катушка обесточивается, электродвигатель отключается от сети. Одновременно размыкающий дополнительный контакт замыкается и включает контактор торможения .

При достижении скорости, близкой нулю, реле РС срабатывает, его контакт отключает цепь питания контактора и двигатель затормаживается.

Схема управления реверсивным электродвигателем с торможением противовключением и использованием реле контроля скорости (рис. 9). При нажатии кнопок «Вперед» или «Назад» замыкаются соответственно цепи катушек контакторов В или Н, срабатывают их контакты, статор двигателя подключается к сети, ротор начинает вращаться.

Изучение схемы управления асинхронным двигателем

Рис. 9. Схема управления реверсивным электродвигателем с торможением противовключением

Одновременно с началом вращения приводится в действие вал реле контроля скорости и замыкаются соответствующие контакты реле РКСВ или РКСН, которые подготавливают цепи катушек контакторов «Вперед» или «Назад» к работе (при работе двигателя в режиме «Вперед» подготавливается к работе цепь катушки контактора

«Назад», и наоборот). При остановке двигателя, когда нажата кнопка «Стоп», разрывается цепь работающей катушки («Вперед» или «Назад»), главные контакты отключают двигатель от сети, а блок-контакты замыкают цепь катушки контактора «Назад» в том случае, когда двигатель работал вращаясь «Вперед», и наоборот.

Таким образом, двигатель переключается в реверсивный режим, однако по инерции продолжает вращаться в прежнем направлении, работая в тормозном режиме противовключения.

Из-за действия тормозного момента частота вращения ротора постепенно снижается и при достижении частоты, близкой к нулю, контакты реле контроля скорости размыкают цепи катушек контакторов

«Вперед» или «Назад» и отключают статор двигателя от сети.

2. Управление электроприводами с асинхронными электродвигателями с фазным ротором

Схема управления в функции времени (рис. 10). Эта схема является типичной для двигателей длительного режима с использованием маятниковых реле времени. При нажатии кнопки «Пуск» включается контактор Л.

При включении контактора Л начинает работать маятниковое реле, которое через заданный промежуток времени включит своими контактами контактор . Далее процесс повторяется.

Замыкающий блок-контакт Л (1—2) предназначен для облегчения работы контактов маятникового реле.

Схема управления в функции времени с несколькими реле времени (рис.11).

Изучение схемы управления асинхронным двигателем

Рис. 10. Схема управления асинхронным электродвигателем с фазным ротором в функции времени

Асинхронный электродвигатель с фазным ротором пускают с помощью пусковых реостатов, состоящих из нескольких ступеней, включаемых в фазы обмоток ротора.

При нажатии на кнопку «Пуск» катушка магнитного пускателя ПМ получает питание, и электродвигатель включается на полное сопротивление пускового реостата.

Одновременно включается реле времени 1РВ, которое через выдержку времени, достаточную для разгона двигателя на этой ступени, включает контактор , и он своими контактами закорачивает первую ступень пускового реостата.

Блок-контакты контактора блокируют катушку и отключают реле времени 1РВ.

Включается одновременно с катушкой реле времени 2РВ, которое через заданную выдержку времени включает второй контактор , а он отключает вторую ступень пускового реостата. Третья ступень пускового реостата отключается аналогично.

Необходимо обеспечивать выбор правильных выдержек времени реле 1РВ, 2РВ и 3РВ. Чрезмерно большие выдержки времени затягивают процесс пуска, а заниженные — не обеспечивают разгон до нужной скорости и вызывают повышенные броски тока. При нажатии на кнопку «Стоп» электродвигатель отключается, и все ступени пускового реостата включаются по фазам ротора.

Схема управления в функции тока (рис. 12). В роторную цепь включены катушки токовых реле ускорения 1РУ, 2РУ, 3РУ, настроенные на срабатывание при токах I1РУ, I2РУ, I3РУ. Контактор включается при спаде силы пускового тока в роторной цепи до значения, соответствующего уставке реле 1РУ.

Рис. 11. Электрическая схема управления асинхронным электродвигателем с фазным ротором

При большей силе тока в цепи ротора размыкающий контакт 1РУ будет разомкнут. Реле ускорения 2РУ и 3РУ, контакторы и работают так же.

Из-за возможности вибраций размыкающих контактов реле ускорения 1РУ, 2РУ и 3РУ предусмотрено их шунтирование размыкающими блок-контактами 1У, 2У и .

Реле блокировки РБ создает выдержку времени, пока сила тока в роторной цепи не достигнет значения, при котором сработает реле ускорения.

Схема управления в функции частоты (рис. 13). Работа этой схемы обеспечивается с помощью частотных реле 1ЧР, 2ЧР и 3ЧР, катушки которых включены в цепь ротора. Магнитный поток реле создается совместным действием магнитодвижущих сил катушки и короткозамкнутого витка (гильзы). При пуске, т.е.

Читайте также:  Бензиновые двигатель vag что это

при большой частоте переменного тока в роторе двигателя, размагничивающее действие тока, протекающего по витку, будет велико, и магнитный поток реле будет относительно мал. При уменьшении частоты тока в роторе магнитный поток реле возрастает, так как происходит уменьшение тока в короткозамкнутом витке.

При каком-то определенном значении частоты якорь притягивается и замыкает контакты реле частоты (1ЧР, 2ЧР и 3ЧР) в цепи контактора ускорения (1У, 2У и ).

При оживлении током катушки контактора ускорения происходит шунтирование его контактами соответствующей ступени пускового сопротивления, включенного в цепь ротора. Частотные реле должны быть настроены на определенные частоты.

Рис. 12. Схема управления асинхронным электродвигателем с фазным ротором в функции силы тока

Рис. 13. Схема управления асинхронным электродвигателем с фазным ротором в функции частоты

Векторное управление для асинхронного электродвигателя «на пальцах»

Изучение схемы управления асинхронным двигателем В предыдущей статье «Векторное управление электродвигателем «на пальцах» рассматривалась векторная система управления для синхронных электродвигателей. Статья получилась большой, поэтому вопрос про асинхронные электродвигатели (induction motors) был вынесен в отдельную публикацию. Данная статья является продолжением предыдущей и опирается на приведенные там объяснения принципов работы электродвигателей. Она расскажет об особенностях работы асинхронного двигателя применительно к векторному управлению, а также покажет отличия в структуре векторной системы управления между синхронной и асинхронной машиной. Как работает асинхронный электродвигатель? Наиболее популярное объяснение говорит что-то типа «статор создает вращающееся магнитное поле, которое наводит ЭДС в роторе, из-за чего там начинают течь токи, в результате ротор увлекается полем статора и начинает вращаться». Лично я от такого объяснения всю физику процесса понимать не начинаю, поэтому давайте объясню по-другому, «на пальцах». Все же видели видео, как магнит взаимодействует с медным цилиндром? Особенно обратите внимание на диапазон времени с 0:49 до 1:03 – это уже самый настоящий асинхронный двигатель:

Эффект происходит из-за появления в цилиндре вихревых токов. Согласно закону электромагнитной индукции, открытого Майклом Фарадеем, при изменении магнитного потока замкнутого контура в нем возникает ЭДС (по-простому считайте, что напряжение). Эта ЭДС, применительно к медному цилиндру, тут же вызывает появление в цилиндре тока. При этом этот ток тоже создает свой, ответный магнитный поток, направленный ровно в противоположную сторону от изменения потока магнита, который мы подносим:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Это можно понимать так, что замкнутый контур сопротивляется изменению магнитного потока внутри себя. Если вы резко поднесёте магнит к медному цилиндру, т.е. сделаете резкое изменение магнитного потока, то в цилиндре потекут такие ответные токи, что магнитное поле внутри цилиндра в первый момент времени будет равно нулю: магнитное поле поднесенного магнита будет полностью скомпенсировано магнитным полем токов цилиндра (с допущениями, конечно). Если магнит поднести и держать, то токи в цилиндре из-за наличия активного сопротивления меди постепенно спадут, а поле цилиндра, создаваемое его токами, пропадет: магнитный поток постоянного магнита «прорвется» внутрь цилиндра, как будто никакого цилиндра и нет. Но стоит попытаться убрать магнит, как цилиндр отреагирует снова – теперь он будет пытаться сам «воссоздать» внутри себя пропадающий магнитный поток, т.е. будет опять сопротивляться изменению магнитного потока, в данном случае его исчезновению. Но что значит «воссоздать магнитный поток»? Это значит, что на какое-то время медный цилиндр можно считать условно «постоянным магнитом» – в нем циркулирует вихревой ток, создающий магнитное поле (на этом же принципе «висят» сверхпроводники в магнитном поле, но это совсем другая история). Давайте теперь обратимся к конструкции асинхронного двигателя. Ротор асинхронного двигателя условно можно представлять себе также в виде медного цилиндра. Но в реальных конструкциях это некая решётка в виде «беличьей клетки» (рисунок 1) из меди или алюминия, совмещенная с магнитопроводом (шихтованное железо).Изучение схемы управления асинхронным двигателем Рисунок 1. Ротор асинхронного двигателя типа «беличья клетка» с током в одной из «рамок» беличьей клетки, реагирующей на нарастание внешнего магнитного поля. На рисунке схематично показано протекание тока в одной из «рамок», т.е. в некоторых прутьях беличьей клетки, если сверху поднести магнит (создать ток в статоре). На самом деле ток в этом случае протекает во всех прутьях, кроме, условно, верхнего и нижнего, для которых изменения потока нет (но они бы среагировали на горизонтально поднесенный магнит).

Помните ещё из начала прошлой статьи картинку со схематическим изображением двухфазной синхронной машины, где ротором был магнит? Давайте теперь сделаем из неё асинхронный двигатель: вместо магнита поставим две перпендикулярные короткозамкнутые катушки, символизирующие медный цилиндр ротора (рисунок 2).

Изучение схемы управления асинхронным двигателем Рисунок 2. Схематическое изображение двухфазного асинхронного двигателя с короткозамкнутым ротором. Замена цилиндра на две катушки для пояснения принципа работы (или моделирования) корректна, точно также как корректна замена трехфазной обмотки на двухфазную. Только в этом случае мы заменяем… «бесконечнофазную обмотку» цилиндра (бесконечное число рамок) на две катушки с эквивалентной индуктивностью и сопротивлением. Ведь двумя катушками можно создать точно такой же вектор тока и магнитного потока, как и цилиндром.

А теперь давайте сделаем на короткое время из асинхронной машины синхронную. Подадим в катушку оси β постоянный ток и подождем секунды две-три, пока в роторе перестанут течь ответные токи: «поднесем внешний магнит».

То есть дождемся спадания токов в роторе, чтобы магнитное поле статора «пронзило ротор» и никто ему не мешал.

Что теперь будет, если выключить ток в статоре? Правильно, на те же две-три секунды, пока ток ротора этому противится, мы из ротора получим «обычный магнит» (рисунок 3).

Изучение схемы управления асинхронным двигателем Рисунок 3. Асинхронный двигатель, когда только что выключили постоянный ток по фазе β – течет ток в роторе ird.

Что же мы ждем? Быстрее, пока магнит не пропал, рисуем вдоль него привычную ось d (как в синхронной машине) и перпендикулярную ей ось q, привязанные к ротору. Включаем структуру векторного управления синхронной машиной, подаем ток по оси q, создавая момент, поехали!

Так можно даже действительно сделать несколько оборотов, пока наш сахарный магнит не растаял, а ось d не ушла в небытие.

Что же делать? Давайте не будем выключать ток по оси d, подпитывая наш магнит! И опять же сохраним структуру векторного управления синхронной машиной, просто подав задание по оси d (раньше там был ноль).

Итак, смотрим на рисунок 4: оси d, q по датчику положения «приделаны» к ротору, двигатель стоит, подан ток по оси d в статоре, что в данном случае для стоячей машины совпадает с осью β. Тока по оси q пока нет: ждем, пока ротор «намагнитится». И вот подаем ток isq (s – статор)! Поехали!

Изучение схемы управления асинхронным двигателем Рисунок 4. Подадим ток в ось d, намагнитив машину, подготовив всё для подачи тока в ось q статора. Далеко ли мы уедем таким методом барона Мюнхгаузена? К сожалению, нет. Смотрите, что произошло (рисунок 5):Изучение схемы управления асинхронным двигателем Рисунок 5. А магнит-то сполз!

Двигатель начал крутиться, но через некоторое время после того, как мы подали ток в ось q, образовав суммарный ток is и «прибив» этот вектор к положению ротора, магнит в роторе «съехал»! И встал ровно вдоль вектора is. Ротор же не понимает, где мы нарисовали ему оси d, q… Ему все равно, крутился он или нет.

Важно, что его внутренний «наведенный магнит» в конечном счете хочет стать сонаправленным с магнитным потоком статора, «подчиниться» внешнему потоку.

Из-за съехавшего магнита двигатель перестанет крутиться: мало того, что между магнитом ротора и током iq нет желаемых 90 градусов, так еще и ток оси d теперь его тянет в противоположную сторону, компенсируя момент, создаваемый током iq. Метод барона Мюнхгаузена не удался.

Что же делать с ускользающим магнитом ротора? А давайте сделаем структуру векторного управления асинхронного двигателя не в осях d,q, приделанных к ротору, а в других осях, приделанных именно к текущему положению «магнита ротора» – назовем их оси x,y, чтобы отличать от d,q. По «научному» – это оси, ориентированные по потокосцеплению ротора.

Но как же узнать, где конкретно сейчас это потокосцепление ротора, т.е.

куда повернут магнит в роторе? Его положение зависит… во-первых, от положения самого ротора (датчик положения у нас есть, хорошо), во-вторых, от токов статора (создающих поток статора, по которому и собирается в конечном счете повернуться магнит ротора), а в-третьих от параметров роторной цепи – индуктивности и сопротивления «медного цилиндра» (он же беличья клетка, он же роторная обмотка, он же цепь ротора). Поэтому… зная всё это, положение «магнита» ротора можно просто вычислять по нескольким дифференциальным уравнениям. Делает это так называемый наблюдатель потокосцепления ротора, выделенный цветом на итоговой структурной схеме векторного управления асинхронным двигателем (рисунок 6).

Читайте также:  Hyundai santa fe стук в двигателе

Изучение схемы управления асинхронным двигателем Рисунок 6. Векторная датчиковая структура управления асинхронным двигателем

В наблюдатель заводятся показания с датчика положения ротора, а также текущие токи статора в осях α, β. На выходе наблюдателя – положение «магнита» ротора, а именно угол наблюдаемого потокосцепления ротора . В остальном структура полностью аналогична таковой для синхронной машины, только оси d,q переименованы в x,y, а на ось x подано задание тока, который будет поддерживать наш «магнит» в роторе. Также на многих обозначениях добавлен индекс “s”, чтобы показать, что данная величина имеет отношение к статору, а не к ротору. Также надо отметить, что в западной литературе не используют оси x,y: у них ось d всегда направлена по полю ротора, что для асинхронного двигателя, что для синхронного. Наши ученые еще в советское время разделили оси d,q и x,y, чтобы исключить путаницу: d,q прикреплены к ротору, а x,y к полю ротора.

Что же получается? Магнит ротора всё время скользит, сползает от текущего положения на роторе в сторону тока оси y. Чем больше этот ток, тем сильнее скольжение.

Наблюдатель в реальном времени вычисляет положение этого магнита и «подкручивает» оси x,y всё время вперед по отношению к осям d,q (положению ротора). Ось x всегда соответствует текущему положению потокосцепления в роторе – положению «магнита». Т.е.

оси x,y бегут всегда (в двигательном режиме) немного быстрее вращения ротора, компенсируя скольжение в нем. Токи в роторе, если их измерить или промоделировать, получаются синусоидальными. Только изменяются они не с частотой статорных токов, а с частотой этого скольжения, т.е. очень медленно.

Если в статоре промышленного асинхронника 50Гц, то при работе под нагрузкой частота тока в роторе – единицы герц. Вот, собственно, и весь секрет векторного управления для асинхронного двигателя.

Чем векторное управление асинхронным двигателем лучше, чем скалярное? Скалярное управление это такое, когда к двигателю прикладывается напряжение заданной частоты и амплитуды – например, 380В 50Гц. И от нагрузки на роторе оно не зависит – никаких регуляторов токов, векторов… Просто задается частота напряжения и его амплитуда – скалярные величины, а токи и потоки в двигателе пусть сами себе удобное место находят, как хотят. В установившемся режиме работы двигателя векторное управление неотличимо от скалярного – векторное точно также будет прикладывать при номинальной нагрузке те же, скажем, 380В, 50Гц. Но в переходных режимах… если нужно быстро запустить двигатель с заданным моментом, если нужно отрабатывать диаграмму движения, если есть импульсная нагрузка, если нужно сделать генераторный режим с определенным уровнем мощности – всё это скалярное управление или не может сделать, или делает это с отвратительными, медленными переходными процессами, которые могут к тому же «выбить защиту» преобразователя частоты по превышению тока или напряжения звена постоянного тока (двигатель колеблется и может запрыгивать в генераторный режим, к которому преобразователь частоты не всегда приспособлен).

В векторной же структуре «всё под контролем». Момент вы задаете сами, поток тоже. Можно ограничить их на нужном уровне, чтобы не превысить уставок защиты. Можно контролируемо форсировать токи, если кратковременно нужно сделать в несколько раз больший момент.

Можно регулировать не только момент двигателя, но и поток (ток оси x): если нагрузка на двигателе мала, то нет никакого смысла держать полный поток в роторе (делать магнит «номинального режима») – можно ослабить его, уменьшив потери.

Можно стабилизировать скорость регулятором скорости с высокой точностью и быстродействием. Можно использовать асинхронный привод в качестве тягового (в транспорте), задавая требуемый момент тяги.

В общем, для сложных применений с динамичной работой двигателя векторное управление асинхронным двигателем незаменимо.

Также есть отличительные особенности векторного управления асинхронного двигателя от синхронного. Первая – это датчик положения. Если для синхронного привода нам нужно знать абсолютное положение ротора, чтобы понять, где магнит, то в асинхронном приводе этого не требуется.

Ротор не имеет какой-то выраженной полюсной структуры, «магнит» в нем постоянно скользит, а если посмотреть в формулы наблюдателя потокосцепления ротора, то там не требуется знания положения: в формулы входит только частота вращения ротора (на самом деле есть разные формулы, но в общем случае так).

Поэтому на датчике можно сэкономить: достаточно обычного инкрементального энкодера для отслеживания частоты вращения (или даже тахогенератора), абсолютные датчики положения не требуются. Вторая особенность – управление потоком в асинхронном электродвигателе.

В синхронной машине с постоянными магнитами поток не регулируется, что ограничивает максимальную частоту вращения двигателя: перестает хватать напряжения на инверторе.

В асинхронном двигателе, когда это случается… просто уменьшаете задание по оси x и едете дальше! Максимальная частота не ограничена! Да, от этого будет снижаться момент двигателя, но, главное, ехать «вверх» можно, в отличие от синхронной машины (по-правде там тоже можно, но недалеко, не для всех двигателей и с кучей проблем).

Точно также существуют бездатчиковые алгоритмы векторного управления асинхронным двигателем, которые оценивают угол потокосцепления ротора не используя сигнал датчика положения (или скорости) вала ротора. Точно также, как и для синхронных машин, в работе таких систем есть проблемы на низкой частоте вращения ротора, где ЭДС двигателя мала. Также следует сказать пару слов о роторе. Если для промышленных асинхронных двигателей его удешевляют, используя алюминиевую беличью клетку, то в тяге, где массогабаритные показатели важнее, наоборот, могут использовать медный цилиндр. Так, во всеми любимом электромобиле Tesla стоит именно асинхронный электродвигатель с медным ротором (рисунок 7)Изучение схемы управления асинхронным двигателем Рисунок 7. Ротор асинхронного электродвигателя Tesla Model S в стальной обшивке (фото из разных источников за разные годы)

Вот, собственно, и всё, что я хотел сказать про асинхронный двигатель.

В данной обзорной статье не рассмотрены многие тонкости, такие как регулятор потока ротора, возможное построение векторной структуры в других осях координат, математика наблюдателя потокосцепления ротора и многое другое.

Как и в конце прошлой статьи, за дальнейшими подробностями отсылаю читателя к современным книгам по приводу, например к «Анучин А. С. Системы управления электроприводов. МЭИ, 2015».

На каком микроконтроллере можно сделать полноценное векторное управление, читайте, например, в статье «Новый отечественный motor-control микроконтроллер К1921ВК01Т ОАО «НИИЭТ», а как это отлаживать в статье «Способы отладки ПО микроконтроллеров в электроприводе». Также наша фирма ООО «НПФ Вектор» предлагает разработку на заказ систем управления электродвигателями и другим электрооборудованием, примеры выполненных проектов можно посмотреть на нашем сайте.

P.S.

У специалистов прошу прощения за не совсем корректное обращение с некоторыми терминами, в частности с терминами «поток», «потокосцепление», «магнитное поле» и другими – простота требует жертв…

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле. 

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте.

Они удовлетворяют большинству требований к электроприводу станков.

Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей. 

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Изучение схемы управления асинхронным двигателем

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть.

Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель.

Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.  

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д. 

Читайте также:  Ауди 80 датчик температуры двигателя блок управления

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Изучение схемы управления асинхронным двигателем

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже. 

Наиболее часто в станках, установках и машинах применяются три электрические схемы: 

  • схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп»,
  • схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.
  • схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

  • 1. Схема управления двигателем с помощью магнитного пускателя
  • Схема показана на рисунке.

Изучение схемы управления асинхронным двигателем

При нажатии на кнопкуSB2 «Пуск» на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем (N). Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты.

Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к.

ток в этом случае идет через блокировочный контакт. 

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки «Пуск» катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют «толчковым». Применяется он в некоторых установках, например в схемах кран-балок. 

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку «Стоп» и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку  SB2 «Пуск».

Таким образом, магнитный пускатель обеспечивает т.н. «нулевую защиту». Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала.

Подробнее смотрите здесь — защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы — A, B, С, а при включении пускателя KM2 — порядок фаз меняется на С, B, A. 

Схема показана на рис. 2.

Изучение схемы управления асинхронным двигателем

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1.

При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB3 двигатель начинает вращаться в другую сторону.

В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку «Стоп». 

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок «Пуск» SB2 — SB3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя. 

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Изучение схемы управления асинхронным двигателем

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 «Стоп»включены по 2 контакта кнопок  SB2 и SB3, причем в цепи КМ1 кнопка  SB2 имеет нормально-открытый контакт (замыкающий), а  SB3 — нормально-закрытый (размыкающий) контакт, в цепи КМ3 — кнопка  SB2 имеет нормально-закрытый контакт (размыкающий), а  SB3 — нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается. 

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку «Стоп», что очень удобно. Кнопка «Стоп» нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков.

Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B. Возможно использование понижающего трансформатора для понижения напряжения в схеме управления.

В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Схема управления асинхронным двигателем с короткозамкнутым ротором

Изучение схемы управления асинхронным двигателем

Управлять асинхронными электродвигателями с короткозамкнутым ротором можно посредством контакторов. При использовании маломощных электродвигателей, для которых нет необходимости ограничивать пусковой ток, запуск производится при действующем напряжении.

Нереверсивная схема управления асинхронного двигателя

Изучение схемы управления асинхронным двигателемРисунок 1 — Простейшая схема асинхронного двигателя

Для подачи напряжения на управляющую и силовую цепь используется автоматический выключатель QF. Пуск асинхронного двигателя осуществляется кнопкой SB1 «Пуск”, которая замыкает свои контакты в цепи катушки магнитного пускателя КМ.

Который срабатывая замыкает основные контакты силовой цепи статора. Вследствие чего электродвигатель М подсоединяется к питанию.

В то же время в управляющей сети происходит замыкание блокирующего контакта КМ который шунтирует кнопку SB1.

Чтобы отключить асинхронный двигатель с кз ротором, необходимо нажать клавишу SB2 «Стоп». При этом питающая сеть контактора КМ размыкается и подача напряжения на статор прекращается. После этого нужно выключают автомат QF.
Схема управления АД с кз предусматривает несколько защит:

  • от КЗ — посредством автоматического выключателя QF и плавкими предохранителями FU;
  • от перегрузок — посредством теплореле КК (при перегреве данные устройства отсоединяют контактор КМ, прекращая работу движка);
  • нулевая защита — посредством магнитного пускателя КМ (при низком напряжении или его полном отсутствии контактор КМ оказывается незапитанным, размыкается и электродвигатель выключается).

Для подключения электродвигателя после срабатывания защитного механизма требуется снова надавить клавишу SB1.

Реостатный пуск асинхронного двигателя с кз ротором

Если невозможно запустить АД с кз ротором в стандартном режиме, используют запуск при сниженном напряжении. С этой целью в цепь статора добавляют сопротивление, реостат или используют автотрансформатор.

Автоматический выключатель QF срабатывает и на управляющую и силовую цепь поступает напряжение. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением.

В то же время питание поступает и на реле времени КТ.

Изучение схемы управления асинхронным двигателемРисунок 2 — Схема асинхронного двигателя с симметричными сопротивлениями (реостатный пуск)

Через определенный временной интервал, задаваемый реле КТ, происходит замыкание контакта КТ. В итоге пускатель КМ2 шунтирует (закорачивает) сопротивление статора. Процедура запуска электродвигателя завершается. Для его выключения необходимо нажать клавишу SB2 и выключить автомат QF.

Реверсивный пуск асинхронного двигателя

Изучение схемы управления асинхронным двигателемРисунок 3. Схема реверсивный пуск асинхронного двигателя с кз ротором.

Данная схема дает возможность производить запуск электродвигателя и изменять направленность его вращения.

Для запуска необходимо включить автомат QF и нажать SB1 «Пуск», в результате чего ток поступает на магнитный пускатель КМ1, который запитывает статор.

АД реверсируется последовательным нажатием кнопок «Стоп» SB3 (КМ1 выключается и двигатель останавливается) и «Реверс» SB2 (срабатывает КМ2 и асинхронный двигатель запускается в реверсивном направлении).

В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения (реверсом).

При помощи нормально замкнутых контактов КМ1 и КМ2 выполнена защита от ошибочного включения сразу двух магнитных пускателей КМ1 и КМ2. Также действуют защиты, аналогичные описанным ранее.

Отключить электродвигатель можно кнопкой SB3 и автоматом QF.

Ссылка на основную публикацию
Adblock
detector