Анализ выхлопных газов автомобиля и их связь с работой двигателя

Информация о материале Владимир Бекренёв Просмотров: 8214

Анализ выхлопных газов автомобиля и их связь с работой двигателяСовременная диагностика двигателя невозможна без применения газоанализатора. В двигателе приготавливается топливовоздушная смесь. Эта смесь должна полностью сгорать в двигателе при соотношении веса топлива и воздуха 1 : 14,7. Это отношение называют лямбда. Измерение состава выхлопных газов помогает диагносту судить о состоянии двигателя и топливной системы.

Параметр лямбда

Лямбда = больше 1 означает избыток воздуха или «бедную» смесь. Лямбда = меньше 1 означает избыток топлива или «богатую» смесь. Все современные компьютерные системы управления двигателем запрограммированы на «приготовление» идеальной смеси для сгорания при различных условиях работы мотора.

Условием правильного сгорания является безупречное состояние механической части двигателя, системы зажигания, впускного и выпускного тракта двигателя. Но абсолютно совершенное сгорание невозможно даже при идеальной топливно-воздушной смеси.

Процесс сгорания можно оценить по составу компонентов выхлопных газов при помощи газоанализатора.Современные 4-х компонентные газоанализаторы анализируют СО, СО2, СН, О2 — и рассчитывают коэффициент лямбда.

На диагностике по анализу компонентов выхлопных газов можно достоверно определить как работает мотор, как приготавливается смесь, имеются ли нештатные подсосы воздуха во впускной и выпускной системах, имеется ли расход масла в двигателе.

Окись углерода

Измерение окиси углерода (СО)- является важнейшим измерительным методом для оценки смесеобразования. Содержание СО в смеси при лямбда =1 равно от 0,1 до 0,45%. При обогащении СО резко возрастает. Пример идеальных показаний на мотиторе газоанализатора.

  Анализ выхлопных газов автомобиля и их связь с работой двигателя Анализ выхлопных газов автомобиля и их связь с работой двигателя

Углеводороды

Измерение углеводородов СН — также имеет важное значение. (СН) появляется в выхлопе при неполном сгорании. По показания СН судят о наличие в выхлопе летучих углеводородов, моторного масла.

Минимальное содержание НС достигается в двигателе с содержанием СО 0,3-0,9% . И составляет до 100 — 150 единиц. Примеры завышенного уровня СН в выхлопных газах.

При показаниях выше 100 единиц можно судить о расходе масла двигателем или о неполном сгорании топлива по различным причинам.

 Анализ выхлопных газов автомобиля и их связь с работой двигателя Анализ выхлопных газов автомобиля и их связь с работой двигателя Анализ выхлопных газов автомобиля и их связь с работой двигателяДвуокись углерода СО2 имеет максимальное значение в выхлопе при полном сгорании и составляет примерно 15%

Количество кислорода в выхлопных газах

Измерение кислорода О2 в выхлопе имеет колоссальное значение в диагностике. Как известно в воздухе примерно 21% кислорода. При сгорании его остается в выхлопе при лямбда = 1 примерно 0,3 – 0,6%.

При увеличении лямбды происходит резкое увеличение кислорода в выхлопе, что говорит о переобеднении смеси.

Недостаток топлива в смеси возможен из-за загрязнения в компонентах топливной системы, или из-за нештатного подсоса воздуха или при негерметичности выхлопа. Примеры различных уровнях кислорода в выхлопе.

Анализ выхлопных газов автомобиля и их связь с работой двигателя Анализ выхлопных газов автомобиля и их связь с работой двигателя Анализ выхлопных газов автомобиля и их связь с работой двигателя 

В современных моторах с непосредственным впрыском топлива в цилиндры газоанализаторы применяют для поисков протечек топлива в масло. Для этого зонд газоанализатора вставляют в маслозаливную горловину двигателя и измеряют количество летучих углеводородов — СН. Нормой считается показания 250-500единиц. Примеры измерений.

Результатом газоанализа выхлопа автомобиля может быть полная картина о состоянии топливной системы, масляной системы и систем впуска и выхлопа.

По газоанализу, при грамотной оценке, можно определить, как приготовлена смесь и как она сгорела. Газоанализ является неотъемлемой частью процесса диагностики двигателя современного автомобиля.

Без газоанализа диагностика двигателя не может быть полноценной. 

Пример измерений при диагностике двигателя и после ремонта. Уровень СО был 10 процентов. Причиной был неисправный датчик кислорода, который давал показания ЭБУ о слишком бедной смеси. ЭБУ максимально завысил подачу топлива и фиксировал ошибку о бедной смеси Р0171. В реалии смесь была очень богатой. После смены датчика кислорода состав газов стабилизировался.

Автокомплекс «Южный» предлагает своим клиентам услугу комплексной компьютерной диагностики систем автомобиля. Услуга включает применение газоанализа. Также мы предлагаем услугу отдельного газоанализа для оценки состояния топливной системы.Владимир Бекренёв. Автокомплекс «Южный».

Записаться на диагностику автомобиля +7(4212)28-78-01

Добавлять комментарии могут только зарегистрированные пользователи.У вас нет прав оставлять комментарии.

Методики анализа выхлопных газов

Многие страны ограничивают вредные выбросы от автомобильных дизельных двигателей путем введения соответствующих норм.

Соответствующие законы содержат, в частности, обусловленные методы проверок, методики измерений и предельные значения, которые используются в разных странах одинаково, тогда как небольшие отклонения обуславливаются экологическими, экономическими и климатическими особенностями.

Предельные значения, которые не должны превышаться, касаются следующих соединений, содержащихся в выхлопных газах:

  • углеводороды (НС или СН);
  • окись углерода (СО);
  • окислы азота (NOx);
  • мелкие частички;
  • сажа (видимые компоненты частичек).

Токсичные вещества в выхлопных газах состоят из следующего:

  • выбросы от сгорания в двигателе (газы, соединения серы, частички, пахучие вещества);
  • выбросы от вентиляции картера двигателя (газы, соединения
  • серы, пахучие вещества);
  • выбросы от испарений (из топливной системы).

Выбросы из картера дизельного двигателя очень незначительны, При такте сжатия сжимается только чистый воздух, а прорывающиеся в картер газы при рабочем ходе (такте расширения) составляют только примерно 1% от токсичных веществ, образуемых бензиновым двигателем.

Тем не менее, замкнутые системы вентиляции картера также оговариваются законами, касающимися дизельных двигателей. В отличие от бензинового двигателя, проверка выбросов от испарений для дизельных двигателей не нужна, так как топливная система замкнута, и дизельное топливо не содержит легколетучих компонентов.

Соединения серы в выхлопных газах являются результатом наличия серы в топливе. Они не должны быть видны как результат сгорания в дизельном двигателе.

Проблема специфического дизельного запаха пока еще не решена; попытки выяснить основу происходящих в дизельном двигателе процессов и выбросов, которые вызывают запах, пока находятся лишь в начальной стадии. Не существует и общепризнанных методов измерений.

Большинство стран имеют, тем не менее, действующие нормы по ограничению выбросов твердых частиц или планируют ввести их. Постоянно возрастающие требования к предельным значениям токсичности выхлопных газов делают необходимыми постоянные исследования в области автомобильных двигателей, направленные на уменьшение вредных выбросов и улучшение измерительных методик для выхлопных газов.

Измерительные приборы

Принципы измерений, используемые во всем мире для предусмотренных проверок, являются следующими.

Анализ содержания углеводородов

Общее содержание углеводородов, содержащихся в выхлопных газах дизельного двигателя, определяется с помощью детектора — анализатора ионизации в пламени (FID). Принцип измерения FID основан на образовании ионов из углеводородов в пламени водорода.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Рис. Метод измерения прибора FID: 1. Дисплей (шкала на приборе); 2. Устройство для сжигания; 3. Выход; 4. Водород; 5. Воздух без НС; 6. Калибровочный газ; 7. Выхлопные газы.

Выхлопные газы содержат большое количество различных соединений углеводородов, которые содержатся по отдельности в несгоревших, расщепленных и частично окисленных соединениях в различных соотношениях в зависимости от типа топлива и режима работы двигателя.

Измерение общего содержания углеводородов в выхлопных газах дизельного двигателя становится особенно проблематичным из-за того, что результаты зависят от метода подготовки образца для измерений.

Изза меняющихся процессов конденсации и испарения углеводородов с высокой температурой кипения в выхлопных газах дизельного двигателя, которые находятся в магистрали для отбора в отличие от измерений для бензинового двигателя, необходимо полностью нагреть магистраль для отбора образца, идущей к детектору — анализатору FID и внутри FID к устройству для сжигания. Температура нагрева магистрали для отбора должна быть 190±10°С.

Анализ окиси и двуокиси углерода

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Рис. Анализ окиси и двуокиси углерода: 1. Источник постоянного напряжения; 2. Усилитель; 3. Основная стабилизация; 4. Ячейка детектора; 5. Металлическая диафрагма; 6. Модулятор излучения; 7. Выхлопные газы; 8. Ячейка с образцом для измерения; 9. Базовая ячейка; 10. Фильтрующие ячейки; 11. Колесико с приводом от двигателя; 12. Источник света.

Оба газообразных соединения анализируются с помощью анализатора инфракрасного поглощения NDIR (инфракрасный бездисперсионный анализатор).

Он использует тот факт, что все многоатомные неэлементарные газы поглощают инфракрасное излучение в определенных областях спектра, особых для каждого газа. Отобранный для измерения газ проходит через измерительную ячейку, расположенную на пути измерительного луча.

Газ, который не поглощает излучение определенной длины волны, находится в базовой ячейке на пути второго луча. Колесико прерывателя направляет излучение вначале к одной стороне, а затем к другой и в соответствующую ячейку детектора.

Каждая из ячеек детектора заполнена анализируемой составляющей газа и отделена от другой металлической диафрагмой в форме пластины конденсатора. Подающее излучение поглощается только в определенной области спектра поглощения соответствующего газа, т.е. отдельно.

Читайте также:  Двигатель isuzu 4bg1 технические характеристики

Разница в количестве поглощенной энергии приводит к разнице в температуре и давлении между двумя ячейками детектора, которая преобразуется в напряжение, пропорциональное концентрации измеряемого соединения.

Анализ окислов азота

Принцип измерения использует явление хемилюминесценции (оптическое излучение, вызванное химической реакцией), которая происходит в области длин волн между 590 и 3000 нм после реакции между окисью азота (N0) и озоном (03).

Образец газа не содержит окись азота, образованную при сгорании топлива в двигателе, но также соединяется с остаточным азотом в выхлопных газах для образования других окислов азота (например, NO2, N20).

Вместе с избыточной долей N0 по сравнению с другими окислами азота, N02 также может достигнуть заметной концентрации, тогда как другие окислы азота имеют концентрацию чуть больше основных значений в окружающем воздухе.

Наличие N0 в образце делает необходимым его термическое или термокаталитическое превращение в N0. В камере для реакций концентрация окислов азота преобразуется в концентрацию N0. Излучение от хемилюминесценции, вызванной 0 3, соответствует общему содержанию окиси азота.

Для того чтобы уменьшить постороннюю люминесценцию, вызванную другими молекулами, содержащимися в смеси газов, учитывается только излучение в области длин волн между 600 и 660 нм, которое фильтруется с помощью оптического фильтра.

Благодаря такому процессу отбора и очень низкому регистрируемому пределу принцип хемилюминесценции подходит для измерений N0 в «разбавленных» или «неразбавленных» выхлопных газах дизельного двигателя. Так как NO2 растворяется в воде, то измерительный контур нагревается до 80°С, чтобы предотвратить конденсацию водяных паров.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Рис. Хемилюминесцентный детектор CLD: 1. Вакуумный насос; 2. Молекулярное сито; 3. Базовый контур; 4. Регулятор количества; 5. Фильтр; 6. Воздух; 7. Кислород; 8. Генератор озона; 9. Капиллярная трубка; 10. Камера для реакций; 11. Оптический фильтр; 12. Фотоэлектронный умножитель; 13. Усилитель; 14. Индикаторный прибор; 15. Выхлопные газы; 16. Преобразователь N02/N0.

Измерение выбросов твердых частиц

В соответствии с определением, выбросами твердых частиц считаются составляющие выхлопных газов, которые при температуре в 52°С осаждаются на стандартных стекловолоконных фильтрах с фтористо-углеродным покрытием. Измерения массы проводятся с использованием разных методов взвешивания (полых или заполненных фильтров) при постоянных уровнях влажности и температуры. Используются прецизионные весы.

Определение выбросов сажи

Методы фильтрации и поглощения обычно указываются в требованиях по контролю выхлопных газов как методы измерения содержания сажи в выхлопных газах дизельного двигателя.

Существует взаимосвязь между результатами измерений обоих методов, если для измерений поглощения (прозрачности) выхлопные газы не содержат паров воды и топливного тумана.

Оба метода измерения дают измеряемые величины, которые возрастают логарифмически с увеличением концентрации сажи. Повышенная точность измерений (10%) может быть достигнута с помощью оптических приборов.

В случае метода фильтрации используется почернение фильтровальной бумаги в качестве меры для количества сажи, осажденной на ней.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Рис. Определение выбросов сажи

В некоторых странах (например, Швейцарии) фильтрующее устройство предписано для измерения выбросов дыма при свободном (без нагрузки) разгоне в качестве критерия для оперативного контроля.

Для этой цели продолжительность движения плунжера насоса фильтра должна быть увеличена до 6 секунд, чтобы полный выброс дыма мог пройти через фильтровальную бумагу (2) в течение хода плунжера (3 — положение плунжера перед измерением, 5 — после измерения).

Оценка производится с помощью фотоячейки (Ь) или с помощью специальной шкалы серости (9).

Дымомер (измеритель поглощения или прозрачности) (а) использует ослабление интенсивности луча света в качестве меры концентрации сажи. При измерении часть выхлопных газов (4) прокачивается насосом через заборное устройство и через шланг в измерительную камеру. Процесс, указанный выше предотвращает давление выхлопных газов и его флуктуации, отрицательно влияющие на результаты измерений.

Луч света (8 — источник света), проходящий через выхлопные газы, поступает в измерительную камеру.

Уменьшение интенсивности света измеряется фотоэлектрическим способом (10 — приемник света) и отображается в % коэффициента прозрачности Т или как коэффициент поглощения к.

Высокая точность к воспроизводимость измерений требуют, чтобы длина измерительной камеры была точно определена, а окошко измерительной камеры поддерживалось чистым от сажи с помощью методов термической очистки.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Рис. Измерение прозрачности для определения выбросов сажи: а) Дымомер; Ь) Измерение выхлопных газов; 1. Пробник для забора выхлопных газов; 2. Клапан переключения на поступление чистого воздуха; 3. Измерительная камера; 4. Измерительное расстояние; 5. Лампа; 6. Приемник; 7. Насос; 8. 1/мин; 9. Коэффициент поглощения к; 10. Время; 11. Коэффициент непрозрачности +.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

  • Рис. Кривая предельных значений для дымности дизельного двигателя
  • К=(1/L)*ln(1-(N/100))
    V — рабочий объем двигателя, л;
    n — число оборотов двигателя, об/мин;
    L — длина поглощения, м;
    N — интервал линейной шкалы, 0-100;
    1 — коэф. поглощения k*, 1/м;
  • 2 — номинальный потк выхлопных газов, (V*n)/120 (л/с).

Диагностирование бензиновых двигателей при работе на сжиженном газе по составу отработанных газов

Состав отработавших газов является одним из информативных источников для диагностирования двигателей. При работе двигателей в широком диапазоне режимов в условиях эксплуатации на сжиженном газе возможно определение с достаточной точностью различных видов неисправностей.

Жидкое моторное топливо используется для ДВС, в своем составе содержит углерод, водород и в малых количествах кислород, азот и серу, поэтому при идеальном сгорании топлива с воздухом (состав воздуха: азот — 78.03 %, кислород — 20.99, углекислый газ — 0.04, водород и другие инертные газы, примерно 0.94 %) в продуктах сгорания должны быть лишь азот (N2), углекислый газ (СО2), вода (Н2О).

  • Однако реальный состав отработанных газов (ОГ) намного сложнее.
  • В двигателях внутреннего сгорания (ДВС) имеется несколько источников выбросов вредных веществ, основными из которых являются три: топливные испарения, картерные и отработанные газы.
  • Отработанные газы — основной источник токсических веществ ДВС — это гетерогенная смесь различных газообразных веществ с разнообразными химическими и физическими свойствами, состоящая из продуктов полного и неполного сгорания топлива, избыточного воздуха, аэрозолей и различных микропримесей (как газообразных, так и в виде жидких и твердых частиц), поступающих из цилиндров двигателя в его выпускную систему.
  • Практика контроля работы ДВС — проверка состава выхлопных газов с помощью четырех- или пятикомпонентного газоанализатора.
  • Для проверки выполнения норм на токсичность определяется содержание в выхлопных газах углеводорода (СН), окиси углеводорода (СО), двуокиси углерода (СО2).

Правильно эксплуатируемый и своевременно обслуживаемый автомобиль способен удовлетворить нормам на токсичность с пробегом до 500000 километров. Углеводороды (СН)- это компоненты несгоревшего топлива, их содержание измеряется в частях на миллион по объему (РРМ или млн ).

  1. Нормально работающий двигатель сжигает в цилиндрах практически все топливо, допустимое содержание СН должно быть менее 50 РРМ.
  2. Бензин является канцерогеном.
  3. Повышенное содержание СН может объясняться, например, большим потреблением масла через слабые уплотнительные кольца поршней.

Чаще всего увеличенное содержание СН вызывается неполадками в системе зажигания. При этом следует проверить: свечи; высоковольтные провода; крышку и ротор распределителя (если они имеются); синхронизацию зажигания; катушки зажигания.

Окись углерода (СО) — неустойчивое химическое соединение, легко вступающее в реакцию с кислородом, дающую двуокись углерода СО2. СО — ядовитый газ без цвета, вкуса и запаха. Вступая в легких в реакцию с воздухом, лишает мозг кислорода.

Уровень СО в выхлопных газах для современных автомобилей с впрыском топлива не должен превышать 0.5 %. Возможные причины повышения содержания СО следующие:

  • — неисправность системы вентиляции картера; — засорение воздушного фильтра; — нарушение оборотов двигателя на холостом ходу; — повышенное давление топлива;
  • — любые другие неисправности, приводящие к работе двигателя на богатых смесях.

Двуокись углерода (СО2) — результат соединения углерода из топлива с кислородом. Допустимое содержание 12 — 15 %. Высокие значения свидетельствуют о хорошей работе двигателя. Низкий уровень СО2 говорит о том, что топливная смесь богатая или бедная. Повышенная концентрация СО2 в атмосфере способствует развитию парникового эффекта.

. Кислород (О2) — в воздухе его 21 %, и в цилиндрах двигателя большая часть вступает в реакцию с топливом. Уровень кислорода в выхлопных газах должен быть низким, не более 0.5 %. Более высокие значения, особенно на холостом ходу, означают утечку во впускном тракте.

Состав отработавших газов ДВС зависит не только от типа используемого вида топлива, но и от типа организации и совершенства рабочего процесса двигателя. Поэтому, характеризуя состав ОГ различных типов двигателей, указывают обычно достаточно широкие пределы содержания компонентов (табл. 1).

Читайте также:  Датчик оборотов двигателя для nissan

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Примечание: в ОГ двигателей содержатся также: свинец, кремний, медь, кальций, цинк, фосфор, марганец, хром, натрий, барий, железо, никель и ряд других веществ, входящие в состав присадок смазочного масла, либо являющиеся продуктами износа деталей двигателя, попадающие КС вместе с маслом.

Горение топлив происходит при различных значениях соотношения топлива и воздуха, а также при различных давлениях в КС.

Изменение давления в КС приводит к изменению пределов воспламенения топливовоздушных смесей, что в свою очередь обуславливает изменение состава продуктов сгорания и тем самым — состава ОГ. В таблице 2 представлены данные по изменению указанных пределов для случая горения смеси природного газа с воздухом.

Анализ выхлопных газов автомобиля и их связь с работой двигателя

Следует обратить внимание на то, что нижний предел воспламенения, т.е. воспламенение бедных топливом смесей, изменяется очень незначительно.

В тоже время верхний предел воспламенения, т.е. воспламенение богатых топливовоздушных смесей, увеличивается существенно.

Для условий использования газообразных смесей в двигателях внутреннего сгорания повышение давления в цилиндре двигателя позволяет успешно сжигать обогащенные топливовоздушные смеси. Если при атмосферном давлении верхний предел содержания газа в смеси14.

2 %, то для условий двигателя при повышении давления сжатия до 3.0…4.0 МПа верхний предел содержания газа может быть увеличен до 40…45 %.

Для повышения эффективности диагностирования экономических качеств автомобиля, а также снижения трудоемкости диагностирования в НИИАТе исследована принципиальная возможность и разработана методика количественной оценки расхода топлива по косвенным параметрам.

В качестве косвенных параметров топливной экономичности принят анализ состава отработавших газов.

Данный метод основан на измерении величин отдельных компонентов продуктов сгорания, концентрации которых в значительной степени зависят от технического состояния двигателя и его систем, влияющих на полноту сгорания топлива. Наиболее полное представление дает анализ ОГ на содержание окиси углерода (СО), углекислого газа (СО2) и углеводородов (СmHn).

Проверка содержания окиси углерода на холостом ходу позволяет контролировать качество приготовления топливной смеси системой холостого хода карбюратора. Проверка системы на холостом ходу, но при повышенной частоте вращения, позволяет в некоторой степени контролировать работу главной дозирующей системы и других вспомогательных устройств карбюратора.

Содержание окиси углерода при этом является информативным и технологичным параметром, но характеризует нарушения в регулировке и техническом состоянии двигателя лишь при работе на обогащенных топливо — воздушных смесях.

Объясняется это тем, что при работе на обедненных смесях содержание окиси углерода в отработавших газах незначительно.

Из-за недостаточной информативности содержания окиси углерода при обедненных смесях, в качестве диагностического параметра целесообразно выбрать концентрацию углеводородов в ОГ, поскольку любое незначительное нарушение процесса сгорания в цилиндрах приводит к резкому повышению их выбросов.

  1. Определить только по концентрации СО, является ли регулировка двигателя оптимальной, невозможно.
  2. Замер же концентраций окиси углерода и углеводородов позволяет не только регулировать двигатели в соответствии с требованиями ГОСТов, но и получать оптимальную регулировку по устойчивости работы и экономичности.
  3. По концентрации углеводородов можно судить о нарушении рабочего процесса не только вследствие неправильного отрегулированного состава топливной смеси, но и других причин, в частности, из — за неисправности системы зажигания.
  4. При проверке систем питания и зажигания на режимах холостого хода можно определить большинство возможных неполадок.
  5. Однако некоторые из них, особенно те, которые относятся к работе главной дозирующей системы и экономайзера (эконостата) карбюратора, более четко проявляются при работе под нагрузкой.

Поэтому, если на АТП есть стенд для определения тягово-экономических качеств автомобиля, после проверки на холостом ходу целесообразно выполнить проверку систем питания и зажигания под нагрузкой. В качестве проверочных могут быть приняты те же режимы, на которых проверяются тяговые качества автомобилей.

  • Исследуя влияние неисправностей систем питания и зажигания на токсичность отработавших газов, КАДИ совместно с Госавтоинспектором получены данные по изменению концентрации окиси углеродов (СО) и углеводородов (СН) при наличии неисправностей и нарушений регулировок систем питания и зажигания.
  • Определены ориентировочные пределы концентраций СО и СН, соответствующие нормальному техническому состоянию систем питания и зажигания, а также установлены возможные причины, вызывающие отклонение содержания токсичных веществ от этих пределов.
  • Возможные неисправности, которые можно определить, зная конкретные отклонения, концентрации СО и СН на холостом ходу:
  • 1. засорение воздушных жиклеров системы холостого хода;
  • 2. повышенный уровень топлива в поплавковой камере;
  • 3. неплотное прикрытие иглой выходного отверстия системы холостого хода;
  • 4. неправильная регулировка привода воздушной заслонки;
  • 5. малое открытие винтов качества системы холостого хода;
  • 6. малые зазоры между электродами свечей зажигания;
  • 7. ранний угол опережения зажигания;
  • 8. неисправность зажигания;
  • 9. поздний угол опережения зажигания;
  • 10. неисправный вакуумный автомат опережения зажигания;
  • 11. заедание клапана экономайзера в открытом состоянии;
  • 12. применения главных топливных жиклеров с большей пропускной способностью;
  • 13. засорение воздушных жиклеров главной дозирующей системы.

А неисправности систем питания и зажигания, которые могут вызвать отклонение концентраций СО и СН от указанных пределов под нагрузкой:

  • 1. применения главных топливных жиклеров с большей пропускной способностью;
  • 2. засорение жиклера или канала экономайзера;
  • 3. заедание клапана экономайзера в открытом состоянии;
  • 4. раннее включение экономайзера.

Использование концентрации СО и СН в отработавших газах бензинового двигателя в качестве диагностических параметров позволяет выявить практически все возможные неисправности систем питания и зажигания.

Содержание выхлопных газов. Анализ бензина при сгорании



Проблемы, связанные с использованием автомобилей, изучаются давно в российской науке и практике. Одной из основных проблем является необходимость изучения состава выхлопных газов от эксплуатации автомобилей в целях снижения их вредного воздействия.

Вопросы, связанные с работой двигателей внутреннего сгорания, исследовали такие авторы, как К. С. Голохваст, Н. К. Христофорова и др. [1], М. С. Ассад, В. В. Грушевский [2], Суфиянов Р. Ш., Моисеев А. Э. [3], Смоленская Н. М., Смоленский В. В. [4], Садов А. А., Говорухин И. А. [5].

Цель данной статьи — провести анализ состава выхлопных газов, образуемых при работе двигателя внутреннего сгорания и рассмотреть пути снижения их вредного воздействия на экологию, а также экономичность.

Актуальность темы заключается в том, что выхлопные газы загрязняют окружающую среду. В современных условиях всеобщей проблемой является глобальное потепление, а также высокий уровень загрязнённости городов. Одной из основных причин этого является растущее количество автомобилей, образующих выхлопные газы.

  • Для отдельного человека значимость темы заключается в необходимости выбора типа двигателя и оптимального топлива для него с точки зрения экономичности расхода самого топлива, обслуживания двигателя, а также долговечности его использования.
  • Следует рассмотреть сам двигатель внутреннего сгорания и процессы, происходящие в нём.
  • Двигатель внутреннего сгорания (ДВС) — тепловой двигатель, где химическая энергия топлива, сгорающая в камере сгорания, преобразуется в механическую работу.
  • Процессы, происходящие в двигателе внутреннего сгорания в течение каждого из 4 тактов (такты — отдельные процессы, протекающие в цилиндре за один ход поршня и составляющие полный рабочий цикл двигателя внутреннего сгорания):
  • − впрыск — камера сгорания расширяется, клапан открыт и наполняется топливной смесью;
  • − сжатие — клапан закрыт, поршень движется вверх, объем камеры уменьшается;
  • − рабочий такт — происходит воспламенение топливной смеси. Смесь расширяет камеру сгорания, толкая поршень;
  • − выпуск — поршень идёт вверх, клапан открыт, камера сгорания очищается от продуктов горения.
  • ДВС классифицируют по разным признакам.

1) по устройству: газотурбинные — работа сгорания воспринимается рабочими лопатками; реактивные — используется реактивное давление, возникающее при истечении продуктов сгорания из сопла; поршневые — работа газообразных продуктов сгорания производится в цилиндре, или используется в машине, приводимой в действие. Поршневые двигатели бывают двухтактные и четырёхтактные.

  1. Двухтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два хода поршня.
  2. Четырехтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за четыре хода поршня.
  3. 2)по назначению: транспортные (автомобильные, судовые, самолётные); стационарные — работает на одном месте и прикреплен к фундаменту или к жесткой неподвижной раме; специальные — применение таких двигателей позволяет упростить электропривод и придать ему некоторые свойства, которые двигатели общего назначения не обеспечивают.
  4. 3) по виду применяемого топлива: работающие на тяжёлом топливе (дизельные); газовые; бензиновые.
  5. Дизельное топливо — жидкий продукт, использующийся как топливо в дизельном двигателе внутреннего сгорания;
  6. Газ, используемый как топливо в ДВС — это пропан-бутан и метан.
Читайте также:  Двигатель аас не заводится

Наиболее распространены бензиновые двигатели, которые используются в легковых автомобилях. Именно они представляют наибольший интерес для раскрытия темы.

Бензин — бесцветная горючая жидкость, получаемая переработкой нефти. Бензин производится нескольких марок, их характеристики даны в таблице 1.

Таблица 1

Марки бензина иих характеристики

Марка ГОСТ/ТУ Октановое число (моторный метод) Октановое число (исследовательский метод)
А-92 ТУ38.001165–87 83 92
АИ-93 ГОСТ 2084–77 85 93
АИ-95 ГОСТ 2084–77 87 95
АИ-98 ГОСТ 2084–77 89 98

Октановое число — это показатель, характеризующий детонационную стойкость топлива, который применяется в ДВС с внешним смесеобразованием.

В России в настоящее время приняты и применяются только 2 метода для определения уровня октана в бензине.

Исследовательский метод определения октанового числа означает проведение испытаний в строгом соответствии с ГОСТ 8226–82 [6] и ГОСТ Р 32339–2013 [7].

Моторный метод определения октанового числа предусмотрен ГОСТ 511–81 [8] и ГОСТ Р 32340–2013 [9]. Сравнительный анализ дизельного и бензинового двигателя представлен в таблице 2.

Таблица 2

Сравнительные характеристики дизельного ибензинового двигателей

Дизельный двигатель Бензиновый двигатель
Преимущества
  • — дизельное топливо меньше подвержено возгоранию
  • дизельный агрегат более экологичный, так как полноценнее и эффективнее сжигает топливный заряд. Дизельное топливо также более экологически чистое, чем бензин
  • расход горючего на дизеле на 30–35 % меньше, чем у бензиновых моторов
  • ресурс дизельного двигателя больше, чем у бензиновых моторов
  • — отсутствие в конструкции дизеля системы зажигания исключает целый ряд проблем, которые присущи бензиновым силовым агрегатам
  1. — бензиновые двигатели мощнее дизельных
  2. шум от бензинового двигателя меньше, чем у дизельного
  3. — бензиновый двигатель работает тише, чем дизельный
  4. — бензиновый мотор выгоднее дизельного по стоимости обслуживания
Недостатки
— дизель восприимчив к морозам стоимость дизельного автомобиля на 25–35 % дороже аналогов на бензине. Двигатель также более дорогой в обслуживании и ремонте. Также владельцы дизельных автомобилей должны чаще менять фильтры и масла — дизельный мотор тяжелее бензинового, что влияет на развесовку автомобиля, его динамические характеристики и управляемость
  • — тяга на низах значительно хуже
  • серьёзная требовательность к качеству масел
  • — больший расход топлива с ростом нагрузки
  • — взрыво- и пожароопасность выше, чем у дизельного топлива

С точки зрения экологичности лучше использовать дизельное топливо. Разница в цене и расход топлива также говорят в пользу дизельного двигателя.

Независимо от вида топлива, в процессе работы ДВС происходит образование выхлопных газов. Выхлопные газы — основной источник токсичных веществ, двухтактного и четырехтактного двигателя внутреннего сгорания, которые загрязняют окружающую среду.

  1. Основными компонентами выхлопных газов двигателей являются оксиды углерода, азота и углеводорода (таблица 3).
  2. Таблица 3
  3. Состав выхлопных газов при работе разных ДВС
Компоненты выхлопного газа Содержание по объему,% Токсичность
бензиновый двигатель дизельный двигатель
Азот 74,0–77,0 76,0–78,0 нет
Кислород 0,3–8,0 2,0–18,0 нет
Пары воды 3,0–5,5 0,5–4,0 нет
Диоксид углерода 5,0–12,0 1,0–10,0 нет
Оксид углерода 0,1–10,0 0,01–5,0 да
Углеводороды неканцерогенные 0,2–3,0 0,009–0,5 да
Альдегиды 0–0,2 0,001–0,009 да
Оксид серы 0–0,002 0–0,03 да
Сажа, г/м3 0–0,04 0,01–1,1 да
Бензпирен, мг/м3 0,01–0,02 до 0,01 да

Азот — хим. элемент 15-й группы с атомным номером 7. Это простое вещество представляет собой двухатомный газ без вкуса, запаха и цвета.

Кислород — химический элемент 16-й группы с атомным номером 8. Химически активный неметалл и самый лёгкий элемент из группы халькогенов.

Пары воды — газообразное агрегатное состояние воды. Отсутствует вкус, запах и цвет. Образуются молекулы воды при её испарении.

Диоксид углерода — бесцветный газ, почти не имеет запаха, с химической формулой СО2, плотность 1,98 кг/м3. Твёрдый диоксид углерода называют сухим льдом.

Оксид углерода — бинарные химические соединения углерода с кислородом. Кроме углекислого газа и угарного газа остальные оксиды углерода относятся к органическим соединениям.

Альдегиды — класс органических соединений, которые содержат альдегидную группу.

Оксид серы — соединение серы с кислородом состава SO2. Бесцветный газ с резким запахом, токсичен. Под давлением сжимается при комнатной температуре.

Сажа — аморфный углерод, продукт неполного сгорания или термического разложения углеводородов в неконтролируемых условиях. Применяется в резинотехнической и в шинной промышленности.

Бензпирен — ароматическое соединение, вещество первого класса опасности. Образуется при сгорании углеводородного жидкого, твёрдого и газообразного топлива.

При работе двигателя на этилированном бензине в составе выхлопных газов присутствует свинец, а у двигателей, работающих на дизельном топливе — сажа.

Несмотря на плюсы дизельного топлива, бензиновые двигатели наиболее распространены, соответственно бензин — наиболее используемое топливо в легковых автомобилях. При его сгорании происходит 92 % выбросов СО, из них 63 % углеводородов и 46 % оксидов азота. При недостатке воздуха происходит сгорание топлива и образуется большое количество оксида углерода.

  • Выводы ирекомендации
  • Чтобы снизить вредное воздействие выхлопных газов на окружающую среду, разработаны новые экологически чистые виды топлива:
  • 1) биодизель — на основе растительных масел применяется в чистом виде и в качестве различных смесей с дизельным топливом;

2) сжатый воздух — помогает малолитражным машинам сократить расход топлива до 3 л на 100 км. Пневмогибрид может передвигаться до 80 % времени на сжатом воздухе, не создавая при этом вредных выбросов.

3) солнечные батареи — такие автомобили оснащены панелями, собирающие солнечную энергию и блоком батарей ёмкостью 6 киловатт-часов. При отсутствии солнечного света запаса батарей хватает на 600 км.

4) жидкий водород — такие автомобили могут работать на бензине и на жидком водороде. Они имеют бензиновый бак на 74 литра и резервуар для хранения 8 кг жидкого водорода. Эти автомобили могут использовать оба вида топлива во время одной поездки: переключение горючего происходит автоматически.

5) электрический двигатель — это элемент электропривода. Состоит из подвижной части (ротора) и неподвижной (статора). После подачи питания ротор вращается. Электрические двигатели в последнее время находят широкое применение в легковых автомобилях.

  1. Также чтобы улучшить экологическую обстановку, необходимо реализовывать следующие мероприятия:
  2. − производить строительство дорог по новым технологиям, что уменьшает выхлопы за счет уменьшения нагрузки на двигатель и увеличения скорости;
  3. − уменьшить вред от эксплуатации транспорта за счёт использования его экологически чистых видов и общественного транспорта;
  4. − улучшать качество горюче-смазочных материалов.
  5. Литература:
  1. Голохваст К. С., Христофорова Н. К. и др. Состав суспензии выхлопных газов автомобилей // Методы экологических исследований. 2013. № 6. С. 95–101.
  2. Ассад М. С., Грушевский В. В. и др. Измерение концентрации полициклических ароматических углеводородов в продуктах сгорания бензинового двигателя // Горение и взрыв. 2016. № 9..4. С. 22–27.
  3. Суфиянов Р. Ш., Моисеев А. Э. Измерение содержания оксида углерода в выхлопных газах автомобильного транспорта // XII международная научно-практическая конференция. МЦНС «Наука и просвещение». 2018. С. 65–68.
  4. Смоленская Н. М., Смоленский В. В. Токсичность отработавших газов в бензиновых двигателях при работе на сжатом природном газе и бензине // Вестник ЮУрГУ. Серия «Машиностроение». 2018. Т.18. № 4. С. 57–65.
  5. Садов А. А., Говорухин И. А. и др. Влияние транспорта на окружающую среду и мероприятия // Молодежь и наука. 2014. № 4. С. 28.
  6. ГОСТ 8226–82 (СТ СЭВ 2183–80) Топливо для двигателей. Исследовательский метод определения октанового числа.

7. ГОСТ 32339–2013 (ISO 5164:2005) Нефтепродукты. Определение детонационных характеристик моторных топлив. Исследовательский метод.

8. ГОСТ 511–2015 Топливо для двигателей. Моторный метод определения октанового числа.

9. ГОСТ 32340–2013 (ISO 5163:2005) Нефтепродукты. Определение детонационных характеристик моторных и авиационных топлив. Моторный метод.

Основные термины (генерируются автоматически): внутреннее сгорание, дизельное топливо, бензиновый двигатель, двигатель, дизельный двигатель, октановое число, газ, камера сгорания, оксид углерода, вредное воздействие.

Ссылка на основную публикацию
Adblock
detector