Асинхронный двигатель класс изоляции f что это

« Назад

Во время работы электродвигателей происходит их нагрев. Температура нагрева может быть разной, т.е. одни двигатели нагреваются меньше, другие — больше.

Величина установившейся температуры двигателя за­висит от нагрузки на его валу. При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

 Допустимый нагрев электрических двигателей зависит от класса изоляции обмоток.

На табличке электродвигателя со всеми данными указан и параметр, называемый  класс изоляции. 

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов.

Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью. Необходимо знать, что с повышением температуры обмоток электродвигателей сверх допустимых значений, резко сокращается срок службы изоляции.

По этому, нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально должен составлять 15—20 лет. 

Электрические машины с изоляцией класса А практически не изготовляются, а класса Е — находят ограниченное применение в машинах малой мощности. Применяют в основном изоляцию классов В и F, а в специальных машинах, работающих в тяжелых условиях (металлургия, горное оборудование, транспорт),— класса Н. В результате использования более нагревостойких материалов, улучшения свойств электротехнических сталей и улучшения конструкций за последние 60—70 лет удалось уменьшить массу электрических машин в 2,5—3 раза.  Асинхронный двигатель класс изоляции f что это
  • При неизменной нагрузке на валу в двигателе выде­ляется определенное количество теплоты в единицу вре­мени. 
  • Предельные допустимые превышения температуры активных частей электродвигателей
  •   t0  (при температуре окружающей среды 40ºС):
  1. Класс E: допустимая температура нагрева до 120°C.
  2. Класс B: допустимая температура нагрева до 130°C.
  3. Класс F: допустимая температура нагрева до 155°C.
  4. Класс H: допустимая температура нагрева до 180°C.

Подробнее о классах нагревостойкости изоляции см Статью Класс нагревостойкости изоляции

В таблице приведены в качестве примера предельно допускаемые превышения температуры  для отдельных частей электрических машин общего применения (О) и тяговых (Т) при продолжительном режиме работы при измерении температуры обмоток по методу сопротивления (т. е. по измерению сопротивления соответствующей обмотки в результате нагрева), а температуры коллектора и контактных колец с помощью термометров. Эти данные соответствуют температуре окружающей среды +40 °С для машин О и +25 °С для машин Т.

Части машин Предельно допустимые превышения температуры, 0С, при классе изоляции
A E B F H A E B F H
общего О тяговых Т
Обмотка якоря машин постоянного тока и обмотки синхронных машин переменного тока 60 75 80 100 125 85 105 120 140 160
Многослойные обмотки возбуждения машин постоянного и переменного тока, компенсационные обмотки 60 75 80 100 125 85 115 130 155 180
Однорядные обмотки возбуждения с неизолированными поверхностями 65 80 90 110 135 85 115 130 155 180
Коллекторы и контактные кольца 60 70 80 90 100 95 95 95 95 105
Температурой окружающего воздуха, при которой общепромышленный электродвигатель может работать с номинальной мощностью, считается 40ºС. 

Если температура окружающей среды больше или меньше +40 для общепромышленного исполнения электродвигателя, то стандарт разрешает определенные изменения допустимых превышений температур. 

При повышении температуры окружающего воздуха более 40ºС, нагрузка на электродвигатель должна быть снижена настолько, чтобы температура отдельных его частей не превышала допустимых значений.  При работе машины в горных местностях, где из-за понижения атмосферного давления ухудшается теплоотдача, стандарт предусматривает некоторое уменьшение допустимых превышений температуры.

Независимо от снижения температуры окружающего воздуха,увеличивать токовые нагрузки более чем на 10% номинального не допускается.

 У асинхронных двигателей на это может влиять изменение напряжения питающей сети, вместе с уменьшением напряжения питающей сети, в квадрате уменьшается мощность на валу двигателя и кроме того, уменьшение напряжения ниже 95% от номинального приводит к значительному росту тока двигателя и нагреву обмоток. Рост напряжения выше 110% от номинального также ведет к росту тока в обмотках двигателя, увеличивается нагрев статора за счет вихревых токов. 

При повышении температуры многие из материалов начинают обугливаться и становятся проводниками. Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением.

 Опыт показывает, что повышение температуры изоляции на 10 °С сокращает срок ее службы примерно в два раза. Так, для изоляции класса А повышение температуры с 95 до 105 °С сокращает срок ее службы с 15 до 8 лет, а нагрев до 120 °С — до двух лет.

В основе этого явления лежит общий закон зависимости скорости химических реакций от температуры, описываемый уравнением Ван-Гоффа-Аре-ниуса.

То есть технологические перегрузки рабочих машин или колебания напряжения в питающей сети ведут за собой увеличение тока в обмотках машин и превышение температуры обмоток выше допустимых для данного класса, в результате срок службы машин быстро уменьшается. 

Приведенные предельные температуры нагрева для отдельных классов изоляции не могут быть полностью использованы в практике, так как в условиях эксплуатации электрических машин и аппаратов не представляется возможным установить точный контроль за температурой изоляции наиболее нагретых деталей.

Асинхронный двигатель класс изоляции f что это Поэтому существующие стандарты на электрические машины устанавливают более низкие пределы допускаемых температур отдельных деталей машин в зависимости от конструкции этих деталей и расположения их в машине. Нормируют не сами температуры, а максимально допустимые превышения температур ?max, так как от нагрузки машины зависит только превышение температуры.
В производственных условиях измерение температуры узлов электрических машин и электроаппаратуры выполняется непосредственно термометром или косвенно на основе измерения их сопротивления.

 Контроль температуры нагрева электродвигателей мощностью выше 100 кВт проводят с помощью встроенных дистанционных термометров.

Для измерения температуры электродвигателей меньшей мощности, а также для измерения температуры в точках электродвигателей, где установка дистанционных термометров невозможна, пользуются переносными спиртовыми или ртутными термометрами.

При измерениях ртутными термометрами следует иметь в виду, что в области переменных магнитных полей возникает положительная погрешность, т. е. термометр покажет завышенное значение температуры.

Для более точного измерения температуры нижнюю часть термометра обвертывают тонкой алюминиевой фольгой, обминая ее так, чтобы прилегание к месту измерения было плотным. Сверху оболочку из фольги накрывают для теплоизоляции ватой. В труднодоступных местах измерения проводят сразу после остановки электродвигателя.

Методом сопротивления измеряют среднюю температуру. Он основан на изменении сопротивления проводника с изменением его температуры. Замеряя сопротивление проводника в холодном и горячем состоянии, рассчитывают температуру проводника.

Повышение температуры двигателя происходит неравномерно. Вначале она возрастает быстро: почти вся теплота идет на повышение температуры, и лишь малое количество ее уходит в окружающую среду.

Пе­репад температур (разница между температурой дви­гателя и температурой окружающего воздуха) пока еще невелик. Однако по мере увеличения температуры дви­гателя перепад возрастает и теплоотдача в окружающую среду увеличивается.

Рост температуры двигателя за­медляется.

Температура двигателя прекращает возрас­тать, когда вся вновь выделяемая теплота будет пол­ностью рассеиваться в окружающую среду. Такая темпе­ратура двигателя называется установившейся.

 Величина установившейся температуры двигателя за­висит от нагрузки на его валу.

При большой нагрузке выделяется большое количество теплоты в единицу вре­мени, значит, выше установившаяся температура двига­теля.

После отключения двигатель охлаждается. Темпера­тура его вначале понижается быстро, так как перепад ее большой, а затем по мере уменьшения перепада — медленно.

Читайте также:  Все о жидкостном ракетном двигателе характеристики

Величина допустимой установившейся температуры двигателя обусловливается свойствами изоляции обмо­ток. Подробнее Статья  Класс нагревостойкости изоляции смотреть

В отдельных точках частей машины температура может быть выше средней.

Так, например, в открытых машинах с воздушным охлаждением, у которых хорошо охлаждаются лобовые части обмоток, пазовые части нагреваются больше, чем лобовые.

Превышения температуры в отдельных наиболее нагретых точках должны быть не более: 65 ° — для изоляции класса А, 90 °С — для изоляции класса В, ПО и 135 °С — соответственно для изоляции классов F и Н.

Чувствительными к нагреву являются и некоторые механические узлы и детали электродвигателей. Для них в паспортах электродвигателей задаются допустимые превышения температур над температурой окружающей среды 35 °С.

Допустимые превышения температуры для подшипников качения составляют 60°С, для подшипников скольжения — 45°С, для стальных деталей коллекторов и контактных колец — 70°С.

Температуру подшипников скольжения можно измерить, погружая термометр непосредственно в масло подшипника.

При достаточном навыке ориентировочное представление о степени нагрева можно получить, притрагиваясь ладонью к нагретому элементу конструкции (ладонь без болевых ощущений обычно выдерживает температуру около 60°С), но важно помнить прежде всего безопасность.

Предельные допустимые превышения температуры частей электрических машин при температуре газообразной охлаждающей среды 40 °С и высоте над уровнем моря не более 1000 м должны быть не более значений, указанных в таблице.

При температурах больше 40 С и высоте более 1000 м эти значения должны быть уменьшены в соответствии с ГОСТ (Машины электрические вращающиеся. Общие технические требования).

Непосредственные измерения температуры при помощи термометров или термощупов дают надежные результаты, но не позволяют определять температуру внутренних наиболее нагретых частей обмотки.

На основе измерения омического сопротивления обмотки можно определить только некоторое среднее значение ее температуры. Поэтому нормы предельно допустимой температуры обмоток указываются с учетом метода ее измерения.

  1. Асинхронный двигатель класс изоляции f что это
  2. Перейти в раздел  Электродвигатели
  3. Асинхронный двигатель класс изоляции f что это
  4. Перейти в раздел Электрические двигатели 220В
  5. Асинхронный двигатель класс изоляции f что это 

Купить электродвигатель можно  

  •  через  
  • зайдя на страницу электродвигателя нажав на него
  • используя стандартные формы на странице 
  • используя кнопку Добавить в корзину и оформить заказ из корзины
  • использую кнопку Купить в один клик
а так же

  • отправить заявку через специальную форму Заказать
  • отправить письмо по электронной почте 

 Обращайтесь

У Вас есть вопрос  , не нашли нужное оборудование, что-то ещё 

  1. воспользуйтесь специальной формой  Напишите нам 
  2. или по электронной почте  mail@arosna.com
Работаем с юридическими и физическими лицами
Для получения оформленного коммерческого предложения по форме для организаций или оформления счета на юридической лицо, воспользуйтесь любым из вариантов
  • укажите реквизиты в комментарии при оформлении через корзину
  • укажите реквизиты в тексте при использовании форм заказа или покупки в один клик
  • направьте запрос по электронной почте
  • воспользуйтесть формой для юридичесикх лиц и ИП
  • Оформление бухгалтерских  документов по НК РФ с НДС
  • Счет-фактура установленого образца
  • Товарная накладная по форме ТОРГ-12
  1. Интернет-магазинО компании

Классы изоляции

Разновидности классов изоляции

На рисунке ниже, показаны существующие классы изоляции и предельные температуры для них.

Асинхронный двигатель класс изоляции f что это

   Класс Y — волокнистые материалы из целлюлозы, хлопка, натурального шёлка. В основном это – различные ткани (хлопковые, шелковые, хлопчатобумажные), бумажные (картон, бумага), пластмассы и древесина.

  • Асинхронный двигатель класс изоляции f что этоэлектрокартон
  • Асинхронный двигатель класс изоляции f что это
  • Асинхронный двигатель класс изоляции f что это

   Класс A – как правило к такому классу относят материалы класса Y только пропитанные или погруженные в специальный жидкий диэлектрик, который усиливает диэлектрическую прочность, а еще повышает нагревостойкость.

К этим жидким диэлектрикам относятся – трансформаторное масло, органические или натуральные смола, различные типы лаков и так далее.При совмещении двух видов диэлектриков, мы получаем: лакобумаги, лакоткани, текстолит, гетинакс.

   Класс E — синтетические органические материалы или простые сочетания этих материалов, при испытаниях которых было установлено, что они способны работать да уровня температуры соответствующей этому классу, то есть 120 градусов Цельсия. В основном это синтетические материалы, а также их сочетания.Асинхронный двигатель класс изоляции f что это

   Класс B — материалы на основе асбеста, слюды и стекловолокна, которые применяются в сочетании с различными органическими пропитывающими и связующими диэлектрическими составами.К ним относят: миканиты, слюдиниты, стеклоткани, асбестовые пряжи и ткани.

  •    Класс F – те же материалы, что и в классе B, но уже в сочетании с неорганическими пропитывающими и связующими в роли которых выступают термостойкие смолы и лаки.
  •    Класс H – так же материалы класса B в сочетании с кремнийорганическими связующими и пропитывающими составами, кремнийорганические лаки, смолы и эластомеры.
  •    Класс C – материалы с рабочей температурой свыше 180 градусов по Цельсию и к ним относятся: стекловолокнистые материалы, стекло, шифер, керамика, слюда, материалы из слюды, асбестоцемент, а также эти же материалы в сочетании с различными кремнийорганическими смолами и лаками.
  • Самыми распространенными классами изоляции стали: класс изоляции E, который применяется в электрических машинах малой мощности; классы изоляции F и B применяются в большинстве электрических машин; для изготовления ответственных электрических машин, работающих в тяжелых и сверхтяжелых условиях, применяется класс изоляции H.

При проектировании и выборе электрических машин, важно учитывать классы изоляции. Так как это может послужить причиной преждевременного выхода из строя электрической машины.

Рабочая температура электродвигателя

Асинхронный двигатель класс изоляции f что этоРабочая температура электродвигателя (в дальнейшем ЭД) определяется в первую очередь классом нагревостойкости изоляции обмоток. И её контроль очень важен. При перегреве электродвигатель может быть повреждён.

Классы нагревостойкости изоляции обмоток

Обмотки – наименее устойчивая к нагреву часть конструкции электродвигателя. Поэтому предел рабочей температуры всего устройства определяется именно температурой, при которой они перегорают.

Выделяют следующие классы нагревостойкости изоляции обмоток:

  • У (максимальная температура – 90 градусов Цельсия). Обмотки выполняются из бумаги или натуральных тканей без дополнительной изоляционной пропитки;
  • А (максимальная температура – 105 градусов Цельсия). Обмотки бумажные или из натуральных тканей с дополнительной изоляционной пропиткой;
  • Е (максимальная температура – 120 градусов Цельсия). Обмотки из органической плёнки синтетического происхождения;
  • B (максимальная температура – 130 градусов Цельсия). Обмотки из стекловолокна или минеральных составов;
  • F (максимальная температура – 155 градусов Цельсия). Обмотки из стекловолокна или минеральных составов с синтетической связующей пропиткой;
  • H (максимальная температура – 180 градусов Цельсия). Обмотки из стекловолокна или минеральных составов с кремнийорганической связующей пропиткой;
  • С (максимальная температура от 180 градусов Цельсия). Обмотки из термоустойчивых материалов с неорганической связующей пропиткой или без неё.

Если рабочая температура асинхронного двигателя слишком мала, то перевести его на более высокий класс нагревостойкости можно лишь при капитальном ремонте с заменой обмоток.

Рабочая температура подшипников электродвигателей

Кроме обмоток, к температурным условиям работы также очень чувствительны и подшипники электродвигателя. Установленные нормы нагрева следующие:

  • Подшипники качения – 95-100 градусов Цельсия;
  • Подшипники скольжения – 80-85 градусов Цельсия;
  • Стальные детали коллектора и контактных колец – 105-110 градусов Цельсия. 

При достижении критических значений температуры подшипника необходимо либо уменьшить нагрузку на используемый ЭД, либо организовать систему охлаждения.

Температурный режим эксплуатации электродвигателей

Нормальные значения температуры внешней среды, при которых электродвигатель работает с номинальной мощностью, определяются климатическим исполнением ЭД.

Так, машины с исполнением У1 и ХЛ1 предназначены для эксплуатации при температуре внешней среды до +40 градусов Цельсия, У3 и Т2 – до +45 градусов Цельсия, Т1 – до +50 градусов Цельсия.

Читайте также:  Включается вентилятор на холодном двигателе пежо 3008

Если температура внешней среды превышает данный параметр и организовать охлаждение не получится, то необходимо снизить нагрузку на используемый электродвигатель.

Для контроля за температурным режимом следует отслеживать напряжение в питающей сети. При его снижении до 95% от номинального и ниже на ЭД подаётся повышенный ток, что приводит к перегреву устройства. Аналогичное явление наблюдается и при повышении напряжения до 110% и выше от номинального, поскольку вихревые потоки приводят к нагреву статора.

Согласно статистике, срок службы изоляции при повышении температуры на 8 градусов выше допустимой нормы вдвое снижает её эксплуатационный период. Поэтому, для сохранения работоспособности машины, стоит выяснить допустимую рабочую температуру, не допускать перегрева и превышения (либо снижения) токовых нагрузок.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту zakaz@cable.ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Классы нагревостойкости изоляции и режим работы электродвигателей

Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, то для оценки стойкости электрической изоляции к воздействию температуры приняты классы нагревостойкости.

В настоящее время наиболее распространены двигатели с изоляцией обмотки по классу F. Температура обмотки этих двигателей не должна повышаться более, чем на 105°С при температуре окружающей среды до +40°С.

Классы нагревостойкости изоляции
Обозначение класса нагревостойкости Y A E B F H 200 220
Температура, °C 90 105 120 130 155 180 200 220

Класс нагревостойкости изоляции электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях.

Изоляция под действием данной максимальной температуры должна иметь нагревостойкость не менее температуры, соответствующей классу нагревостойкости электротехнического изделия.

Приведенные температуры являются фактической температурой изоляции, но не превышением температуры электротехнического изделия. В стандартах на электротехнические изделия обычно нормируют величину превышения температуры, а не фактическую температуру.

При разработке стандартов, устанавливая методы измерения и допустимое превышение температуры, следует учитывать такие факторы, как конструкция, температурная проводимость и толщина изоляции, доступность изолированных частей, метод вентиляции, характеристики нагрузки и т. д.

  Как зарядить телефон без зарядного устройства и розетки

Основанием для установления рациональных температурных пределов изоляции является только опыт или соответствующие испытания (см. ГОСТ 8865–93).

Номинальная мощность всегда зависит от режима работы и продолжительности включения. Наиболее распространены электродвигатели с режимом работы S1, рассчитанные на продолжительный режим работы.

Этот режим предусматривает эксплуатацию с постоянной нагрузкой, длительности которого достаточно для работы двигателя в условиях стабильного теплового режима.

Реже используются электродвигатели с кратковременным режимом работы S2, предполагающим эксплуатацию в режиме постоянной нагрузки в течение определенного ограниченного промежутка времени, сопровождаемого паузой с остыванием двигателя до температуры окружающей среды.

Режимы работы электродвигателей определяет стандарт IEC 34 (EN 60034).

Почему выгодно купить электродвигатели в ?

Классы изоляции по нагревостойкости

Нагревостойкость — одно из самых важных качеств электроизоляционных материалов, так как она определяет допустимую нагрузку электрических машин и аппаратов. При повышении температуры многие из этих материалов начинают обугливаться и становятся проводниками.

Все материалы от длительного воздействия повышенных температур задолго до обугливания приобретают хрупкость, легко разрушаются и теряют свои изолирующие свойства. Этот процесс называется тепловым старением.

Способность электроизоляционных материалов выдержать без вреда для них воздействие повышенной температуры, а также резкие смены температуры называется нагревостойкостью.

Нагревостойкость изоляции является основным требованием, определяющим надежность работы и срок службы электрической машины, который нормально составляет 15—20 лет. Электроизоляционные материалы по нагревостойкости делят на семь классов:

Ниже перечислены материалы, относящиеся к каждому из этих классов: класс Y — текстильные и бумажные материалы, изготовленные из хлопка, натурального шелка, целлюлозы и полиамидов (ленты, бумага, картон, фибра), древесина и пластмассы с органическими наполнителями;

класс А — материалы класса Y, пропитанные изоляционным составом или погруженные в жидкие диэлектрики (натуральные смолы, масляные, асфальтовые, эфирцеллюлозные лаки, трансформаторное масло, термопластичные компаунды); лакоткани, изоляционные ленты, лакобумаги, электрокартон, гетинакс, текстолит, пропитанное дерево, древесные слоистые пластики, некоторые синтетические пленки, изоляция проводов (ПБД, ПЭВЛО, ПЭЛШО и др.) из хлопчатобумажной ткани, шелка и лавсана, эмалевая изоляция проводов (ПЭЛ ПЭМ ПЭЛР и ПЭВД и др.);

класс Е — синтетические пленки и волокна, некоторые лакоткани на основе синтетических лаков, термореактивные синтетические смолы и компаунды (эпоксидные, полиэфирные, полиуретановые, изоляция проводов типов ПЛД, ПЭПЛО из лавсана, эмалевая изоляция проводов типов ПЭВТЛ, ПЭТВ и др. на основе полиуретановых и полиамидных смол);

класс В — материалы на основе слюды (миканиты, микаленты, слюдиниты, слю-допласты), стекловолокна (стеклоткани, стеклолакоткани), асбестовых волокон (пряжа, бумага, ткани) с бумажной, тканевой или органической подложкой; пленкостеклопласт «Изофлекс»; пластмассы с неорганическим наполнителем; слоистые пластики на основе стекловолокнистых и асбестовых материалов; термореактивные синтетические компаунды; эмалевая изоляция проводов типов ПЭТВ, ПЭТВП и др. на основе полиэфирных лаков и термопластических смол. Пропитывающими составами служат битумно-масляно-смоляные лаки на основе природных и синтетических смол;

класс F — материалы, указанные в классе В, из слюды, стекловолокна, асбеста, но без подложки или с неорганической подложкой; пленкостеклопласт «Имидофлекс», стекловолокнистая и асбестовая изоляция проводов типов ПСД, ПСДТ, а также эмалевая изоляция проводов типов ПЭТ-155, ПЭТП-155 на основе капрона. Пропитывающими составами служат термостойкие синтетические лаки и смолы;

класс Н — указанные в классе В материалы из слюды, стекловолокна и асбеста без подложки или с неорганической подложкой, кремнийорганические эластомеры, стекловолокнистая и асбестовая изоляция проводов типов ПСДК, ПСДКТ, эмалевая изоляция проводов типов ПЭТ-200, ПЭТП-200 и др. на основе кремнийорганических лаков; пропитывающими составами служат кремнийорганические лаки и смолы;

Общие положения

2.1. Классы нагревостойкости

Стойкость изоляции электротехнических изделий зависит от многих факторов, таких как температура, электрические и механические воздействия, вибрация, агрессивность среды, химические воздействия, влажность, загрязнение и радиационное излучение.

Поскольку для электротехнических изделий доминирующим фактором старения электроизоляционных материалов и систем изоляции является температура, для оценки стойкости электрической изоляции электротехнических изделий к воздействию температуры приняты классы нагревостойкости.

Классы нагревостойкости и соответствующие им температуры приведены в таблице

Обозначение класса нагревостойкости Температура, °С
Y 90
А 105
Е 120
В 130
F 155
Н 180
200 200
220 220
250 250

Температура выше 250°С должна повышаться на интервал в 25°С с присвоением соответствующих классов.

  Единицы измерения силы в системе СИ. Сила в ньютонах

Использование буквенных обозначений необязательно. Но следует придерживаться вышеприведенного соответствия между буквенными обозначениями и температурами. Если п. 2.1.5 применяется по отношению к специальному виду оборудования, можно использовать альтернативную систему классификации.

Класс нагревостойкости электротехнического изделия отражает максимальную рабочую температуру, свойственную данному изделию при номинальной нагрузке и других условиях.

Изоляция под действием данной максимальной температуры должна иметь нагревостойкость не менее температуры, соответствующей классу нагревостойкости электротехнического изделия (см. п. 2.1.2). Термин «класс» использовался при ссылке на электроизоляционные материалы, системы изоляции и изделия. В.

ГОСТ 27710 был введен термин «температурный индекс», распространяющийся на электроизоляционные материалы, а в ГОСТ 27905.1 — термин «идентификация» для систем изоляции. Идентификация системы распространяется только на случай ее использования в конкретном изделии, для которого она предназначена.

Читайте также:  Горит индикатор двигателя троит

Термин «классификация» можно использовать для электротехнических изделий.

2.1.1. Условия эксплуатации

При нормальных условиях эксплуатации можно получить удовлетворительный экономичный срок службы для таких электротехнических изделий, как вращающиеся машины, трансформаторы и т.д., спроектированных и изготовленных в соответствии со стандартами, основанными на температурах, представленных в п. 2.1, делая необходимые допуски для учета факторов, характерных для данного изделия.

2.1.2. Электроизоляционные материалы в системах изоляции

Присвоение электротехническому изделию конкретного класса нагревостойкости не означает, что каждый электроизоляционный материал, используемый в конструкции изделия, имеет такую же нагревостойкость.

Нагревостойкость отдельных материалов, входящих в систему изоляции, может не соответствовать нагревостойкости самой системы.

В системе характеристики нагревостойкости электроизоляционного материала могут быть улучшены за счет предохраняющего эффекта других материалов, входящих в данную систему изоляции.

С другой стороны, несовместимость между материалами может понизить соответствующий температурный предел всей системы по сравнению со значениями для отдельных материалов. Совместимость материалов в системе изоляции и установление максимальной рабочей температуры для всей системы должны устанавливаться в ходе функциональных испытаний или в результате опыта эксплуатации.

2.1.3. Температура и превышение температуры

Температура, приведенная в настоящем стандарте, является фактической температурой изоляции, но не превышением температуры электротехнического изделия. В стандартах на электротехнические изделия обычно нормируют величину превышения температуры, а не фактическую температуру.

При разработке таких стандартов, устанавливая методы измерения и допустимое превышение температуры, следует учитывать такие факторы, как конструкция, температурная проводимость и толщина изоляции, доступность изолированных частей, метод вентиляции, характеристики нагрузки и т.д.

2.1.4. Другие факторы воздействия

Кроме температуры, на способность изоляции выполнять свои функции влияют такие факторы, как механические нагрузки, действующие на изоляцию и ее опорные конструкции, а также вибрация и тепловое расширение, роль которого может возрастать с увеличением габаритов изделия. Вредное влияние может оказывать атмосферная влага, загрязнение, химические воздействия. Все эти факторы следует принимать во внимание при разработке конкретных изделий. Дополнительная информация об этом содержится в ГОСТ 27905.1.

2.1.5. Характеристика изоляции

Фактическая характеристика изоляции при эксплуатации зависит от конкретных условий, которые могут меняться в зависимости от воздействия окружающей среды, рабочих циклов изделия.

Кроме того, прогнозируемая характеристика при эксплуатации зависит от относительного значения размеров, надежности периода использования сопряженного оборудования и экономической целесообразности. Для некоторых видов изделий целесообразно установить значение температуры изоляции, превышающей нормальную или ниже нормальной.

Такие случаи могут иметь место, когда ожидается срок службы короче или длиннее нормального, или существуют особые условия эксплуатации.

Срок службы изоляции зависит от защиты от кислорода, влаги, загрязнений и химических воздействий. Следовательно, при данной температуре срок службы изоляции может увеличиваться, если она защищена от воздействия промышленной атмосферы.

Использование химически инертных газов или жидкостей в качестве охлаждающей или защитной среды может повышать стойкость изоляции к воздействию температуры.

Наряду со старением, которому подвергается изоляция, некоторые материалы при нагревании размягчаются и теряют исходные свойства, которые могут восстанавливаться после охлаждения. Такие изоляционные материалы не являются непригодными для их использования

2.2. Ответственность за выбор и назначение

Ответственность за выбор соответствующих материалов и систем изоляции лежит на изготовителе электротехнического изделия.

Основанием для установления рациональных температурных пределов изоляции является только опыт или соответствующие испытания. Опыт эксплуатации является важным критерием при выборе материалов и систем.

Основанием для выбора в случае новых материалов и систем являются соответствующие испытания (см. разд. 4).

Класс теплостойкости изоляции обмоток электродвигателя

ОБЕСПЕЧИВАЕМ ПОЛНЫЙ ЦИКЛ РАБОТ: ВЫБОР ОБОРУДОВАНИЯ-МОНТАЖ-ГАРАНТИЙНОЕ ОБСЛУЖИВАНИЕ.

В заводской табличке электронасоса наряду с другими характеристиками производитель указывает класс изоляции. Классом теплостойкости изоляции определяется допустимый нагрев электродвигателя. При покупке насоса потребитель по классу теплостойкости изоляции может прогнозировать срок службы электродвигателя насоса, надёжность работы, допустимые пределы нагрузки.

Процесс работы электродвигатель насоса сопровождается выделением тепла и превышением температуры компонентов двигателя над температурой окружающей среды. Превышение температуры неодинаково для различных двигателей.

В процессе работы двигателя диэлектрические свойства изоляции постепенно снижаются в результате комплексного воздействия тепловых, химических, механических и электрических факторов. Срок службы изоляции ограничивается способностью обеспечивать диэлектрические свойства в пределах допустимых границ.

Наибольшую значимость представляет тепловое воздействие так, как оно преимущественно и определяет эффективный срок службы обмоток электродвигателя. Повреждение изоляции обмоток ведет к короткому замыканию и охватывает на практике 90% всех аварийных случаев выхода из строя электродвигателя насоса.

Быстрое снижение прочности изоляции и короткое замыкание есть результатом длительного температурного режима работы, превышающего эксплуатационные требования производителя.

Независимо от указанного производителем класса нагревостойкости и, соответственно, предельной рабочей температуры обмоток статора срок службы двигателя находится в прямой зависимости от реальной рабочей температуры – чем ниже рабочая температура, тем больше срок службы изоляции и двигателя в целом. Поэтому потребителю можно сделать важный вывод –кроме класса изоляции срок службы электродвигателя зависит от соблюдения требуемых производителем условий охлаждения.

Наиболее распространенные в области производства электронасосов классы изоляции и, соответствующие классам максимальные температуры, указаны в таблице 1.

Таблица 1. Класс изоляции и предельная температура при длительной работе.

Класс изоляции А Е B F H
Предельная температура, оС 105 120 130 155 180

На температуру различных частей работающего электродвигателя прямо оказывает влияние температура окружающей среды.

Поэтому международные стандарты наряду с допустимой температурой обмоток регламентируют также максимально допустимое превышение температуры над температурой окружающей среды.

Температура окружающей среды ограничивает нагрев обмоток на основании применяемого класса нагревостойкости.

Стандарт IEC 335-1/335-2-41 в отношении электрических насосов для бытового потребления работающих с номинальной нагрузкой устанавливает значение температуры окружающей среды 25оС.

При этом допускается кратковременное повышение температуры до 35оС или при указной температуре нагрузка электронасоса должна быть пропорционально снижена.

Указанный стандарт определяет следующие ограничения в превышении температуры обмоток.

Таблица 2. Требования IEC 335-1/335-2-41 к ограничению превышения температуры над температурой окружающей среды в соответствии с классом нагревостойкости.

Класс изоляции А Е B F H
ΔТ, оС 75 90 95 115 140

Стандарт IEC 34-1 ограничивает температуру окружающей среды на уровне 40°C для электродвигателей, работающих с номинальной нагрузкой. Стандарт определяет необходимость снижения нагрузки при превышении допустимой температуры окружающей среды так, чтобы температура отдельных его частей в любом случае не превышала допустимых значений.

Таблица 3. Требования IEC 34-1 к ограничению превышения температуры над температурой окружающей среды в соответствии с классом нагревостойкости.

Класс изоляции А Е B F H
ΔТ, оС 60 (65) 75 80(85) 105(110) 125(130)

Значения в скобках относятся к электродвигателям с потребляемой мощностью менее 600Вт.

В заключении отметим то, что класс изоляции конкретного электродвигателя применяется для ограничения максимального превышения температуры обмоток над допустимой температурой окружающей среды.

Высокая температура нагревостойкости изоляции свидетельствует о применении качественных изолирующих материалах в конструкции электродвигателя, что позволяет использовать электрический насос в более жестких эксплуатационных условиях. Электронасосы европейских производителей укомплектованы электрическими двигателями с изоляцией класса В или F в зависимости от типоразмера двигателя.

В отдельных случаях специальные насосы, например, циркуляционные насосы для систем отопления или погружные насосы для работы в тяжелых условиях охлаждения комплектуются электродвигатели с изоляцией класса Н.

 

Ссылка на основную публикацию
Adblock
detector