Давление наддува турбины бензинового двигателя

Давление наддува турбины бензинового двигателя

Существует два способа повышения мощности двигателя. Первый — повышение объема камеры сгорания. Но в условиях постоянно ужесточающийся экологических требований к двигателям внутреннего сгорания, этот метод в настоящее время практически не используется.  Второй метод повышения мощности сводится к принудительному увеличению количества горючей смеси, то есть к наддуву. Поэтому сейчас, наддув является основным средством повышения мощности в современных автомобилях. Вот о том, какими бывают процессы наддува в двигателе, мы и поговорим в этой статье.

Процессы наддува

Мощность двигателя пропорциональна массовому расходу воздуха, который, в свою очередь, пропорционален плотности воздуха.

Рабочий объем и частота вращения коленчатого вала двигателя могут быть увеличены за счет пред­варительного сжатия воздуха перед поступле­нием его в цилиндры двигателя, т.е. путем так называемого наддува.

Коэффициент наддува соответствует увеличению плотности нагнетаемого воздуха по сравнению с атмосферным давлением (в двигателях без наддува воздух поступает под атмосферным давлением).

С точки зрения термодинамики наилучшие результаты могли бы быть получены в процессе изотермического сжатия, однако это технически недостижимо. На практике оптимальным процессом является адиабатиче­ское сжатие; при этом увеличение плотности воздуха сопровождается потерями.

Коэффициент наддува в бензиновых двигателях ограничивается возникновением детонации, а в дизельных двигателях — максимально допустимым пиковым давлением в цилиндре. Поэтому двигатели с наддувом обычно имеют более низкие степени сжатия, чем двигатели без наддува той же мощности.

Динамический наддув

На процессы газообмена оказывает влияние не только установка фаз газораспределения, но и геометрия впускных и выпускных каналов.

Движение поршня на такте всасывания при открытии впускного клапана создает волну всасывания, которая отражается от открытого конца впускного трубопровода и возвращается к впускному клапану в виде волны давления.

Эти волны давления могут быть использованы Для увеличения массового расхода воздуха на впуске. Кроме геометрии впускного трубопро­вода интенсивность этого эффекта наддува, основанного на газодинамике, также зависит от величины оборотов двигателя.

Инерционный наддув

Давление наддува турбины бензинового двигателяВ системах инерционного наддува каждый цилиндр снабжен отдельным впускным каналом определенной длины, обычно соединяю­щимся с общей камерой. По этим впускным каналам волны давления могут распространяться независимо друг от друга (рис. «Принцип инерционного наддува» ). Длины отдельных впускных каналов адапти­рованы к установке фаз газораспределения таким образом, чтобы в желаемом диапазоне оборотов двигателя за счет волны давления, проходящей через открытый впускной клапан, достигалось увеличение массы заряда.

В то время как длина каналов должна быть адаптирована к диапазону оборотов двигателя, диаметры каналов должны быть согласованы с рабочим объемом цилиндра.

В системе впуска, показанной на рисунке «Принцип изменения геометрии впускного трубопровода«, возможно переключение между двумя системами каналов различной длины.

Переклю­чающий клапан или заслонка закрывается в нижнем диапазоне оборотов двигателя, и всасываемый воздух поступает в цилиндры через более длинные впускные трубопро­воды. При высоких оборотах переключаю­щий клапан открыт, и воздух поступает через короткий впускной трубопровод.

Давление наддува турбины бензинового двигателя

Наддув с использованием специально настроенных впускных каналов (резонансный наддув)

При определенных оборотах двигателя возникает резонанс колебаний газа во впускном трубопроводе, вызванных возвратно поступательным движением поршня, что создает дополнительный эффект наддува.

При таком варианте наддува короткие трубопроводы соединяют группы цилиндров двигателя с резонансными ресиверами с такими же интервалами, как промежутки между вспышками в цилиндрах (рис. «Принцип наддува с использованием специально настроенных впускных каналов» ).

Давление наддува турбины бензинового двигателя

Эти ресиверы сообщаются с атмосферой или общей камерой посредством специально отрегули­рованных трубок и резонаторов Гельмгольца. Длина и диаметр трубопроводов опреде­ляются диапазоном оборотов двигателя, в котором должен возникать эффект допол­нительного резонансного наддува (рис. «Повышение коэффициента наполнения цилиндра зарядом при помощи динамического наддува» ).

Впускные трубопроводы с изменяемой геометрией

Поскольку эффект динамического наддува зависит от режима работы (величины оборотов) двигателя, изменяемая геометрия впускного трубопровода позволяет получить практически идеальную кривую крутящего момента.

Регулируемые системы могут быть реализованы посредством изменения длины впускных каналов за счет переключения между системами каналов различной длины или диаметра, попеременного перекрытия отдельных каналов в системах с несколькими наборами впускных каналов или пере­ключения между различными впускными объемами.

Эти переключения могут осущест­вляться электрическими или электропневматическими клапанами или заслонками.

Механический наддув

В механических системах наддува привод нагнетателя осуществляется непосредственно от двигателя внутреннего сгорания (см. «Нагнетатели» ).

При этом нагнетатель и двигатель внутреннего сгорания механически соединены друг с другом.

Применяются механические объемные нагнетатели (компрессоры) различных конструкций (нагнетатели Roots, спиральные нагнетатели) и гидрокинетические компрессоры (например, радиальные компрессоры).

До настоящего времени коленчатый вал и вал нагнетателя соединяются с фиксиро­ванным передаточным отношением. Для привода нагнетателя могут использоваться механические или электромагнитные муфты. Давление наддува регулируется при помощи перепускного устройства с регулирующей заслонкой (регулятора давления наддува).

Преимущества механического наддува:

  • Нагнетатель установлен на холодной стороне двигателя;
  • Компоненты нагнетателя не оказывают влияния на работу системы выпуска отра­ботавших газов;
  • Нагнетатель мгновенно реагирует на изменение нагрузки.

Недостатки механического наддува:

  • Мощность, требуемая для привода нагнетателя, отбирается от полезной мощности двигателя, что вызывает повышение расхода топлива;
  • Приемлемый уровень шума может быть достигнут только посредством специальных мер;
  • Сравнительно большой объем и вес системы;
  • Нагнетатель должен быть установлен на уровне приводного ремня

Турбонаддув с использованием отработавших газов

В системах турбонаддува с использованием отработавших газов некоторая часть энергии отработавших газов преобразуется в механи­ческую энергию, необходимую для привода нагнетателя при помощи турбины (турбонаг­нетателя отработавших газов).

Таким образом, этот процесс использует некоторую часть энтальпии, которая на безнаддувных двигателях остается неиспользованной. Однако эти си­стемы вызывают увеличение противодавле­ния отработавших газов.

Для сжатия воздуха в таких системах используются исключительно гидрокинетические компрессоры.

Рис. «Сравнение кривых мощности и крутящего момента двигателей без наддува и с турбонаддувом»

Давление наддува турбины бензинового двигателя Давление наддува турбины бензинового двигателя

Турбонагнетатели отработавших газов обычно применяются для создания высокого давления наддува даже при низких частотах вращения коленчатого вала двигателя. Другими словами, турбина турбонагнетателя рассчитана на среднюю частоту вращения.

При этом следует учитывать, что при высоких частотах вращения давление наддува может возрастать до уров­ней, которые вызовут чрезмерные нагрузки на двигатель. Поэтому турбина снабжается пере­пускным клапаном, который при определенной частоте вращения начинает пропускать часть потока отработавших газов мимо турбины. При этом энергия этих отработавших газов остается неиспользованной.

Значительно более удовлет­ворительные результаты (т.е. высокое давление наддува в нижнем диапазоне оборотов и в то же время возможность избежать перегрузки в верхнем диапазоне) могут быть получены при использовании турбонагнетателя с изменяемой геометрией турбины (VTG).

В этих системах за счет изменения положения направляющих ло­паток осуществляется регулирование сечения потока и угла атаки рабочих лопаток (и, таким образом, давления отработавших газов, посту­пающих на турбину) (см. «Турбо­нагнетатели»).

Преимущества турбонаддува с использованием отработавших газов:

  • Значительное увеличение выходной мощ­ности на литр рабочего объема;
  • Значительное снижение расхода топлива по сравнению с двигателями без наддува равной мощности;
  • Снижение содержания токсичных продук­тов в отработавших газах;
  • Сравнительно небольшой занимаемый объем;
  • Может быть использован совместно с си­стемами рециркуляции отработавших га­зов низкого давления.

Недостатки турбонаддува с использованием отработавших газов:

  • Установка турбокомпрессора в тракте с «горячими» отработавшими газами требует применения термостойких материалов;
  • Повышенная тепловая инерция в системе выпуска отработавших газов;
  • Без принятия дополнительных мер сравни­тельно низкий пусковой крутящий момент в случае установки на двигателях с малым рабочим объемом.

Специальные виды турбонаддува

В электрифицированных системах турбонаддува используется дополнительный электродвигатель, приводящий во вращение турбонагнетатель при отсутствии потока отработавших газов.

Преиму­щество такой системы заключается в обеспече­нии турбонаддува в переходных режимах работы двигателя и при низких частотах вращения. Эти системы пока что не нашли применения в серий­ном производстве автомобилей ввиду их большой сложности и высокой потребляемой электриче­ской мощности.

Применение электрифицирован­ных систем турбонаддува позволит значительно уменьшить занимаемый системой объем.

Еще один специальный вид турбонаддува — системы турбонаддува с использованием энер­гии волн сжатия, которые пока что не нашли применения в серийном производстве. Принцип действия основан на отражении волн сжатия во вращающемся секционном роторе (см. «Нагне­татели и турбонагнетатели»).

Основным преи­муществом является очень высокое быстродей­ствие, обеспечивающее быстрое нарастание крутящего момента в переходных режимах.

Од­нако применение таких систем связано с высо­кими затратами, а необходимость в отдельном приводе создает проблему нахождения соответ­ствующего свободного пространства.

Диаграмма объемного расхода

Давление наддува турбины бензинового двигателяКартина зависимости работы нагнетателя от характеристик двигателя наглядно иллюстри­руется диаграммой «давление-объемный расход» (рис. «Графики зависимости степени повышения давления в нагнетателе от объемного расхода для объемного нагнетателя с принудительным приводом и турбокомпрессора» ), на которой степень повы­шения давления в нагнетателе πс соотносится с объемным расходом V.

  • Особенно иллюстративны графики для недросселированных четырехтактных двига­телей (дизельных), поскольку они содержат наклонные прямые линии (характеристики массового расхода двигателей), которые отра­жают возрастание объемного расхода воздуха по мере того, как степень повышения давле­ния
  • πс = р2/р1
  • где:
  •  р1 — давление наружного воздуха
  • р2 — давление наддува; возрастает при постоянной частоте вращения двигателя.
  • Диаграмма демонстрирует степень повы­шения давления при постоянных частотах вращения нагнетателя для нагнетателя с принудительным приводом и турбоком­прессора.
Читайте также:  Высокие обороты турбо двигателя

Только механические нагнетатели, у кото­рых производительность пропорциональна их частоте вращения, пригодны для двига­телей автомобилей. Это нагнетатели с при­нудительным приводом конструкции Roots. Турбокомпрессоры с механическим приво­дом непригодны.

Система рециркуляции отработавших газов

Давление наддува турбины бензинового двигателяСистема внешней рециркуляции отработавших газов (EGR) является эффективным средством снижения температуры в камере сгорания. Го­рячие отработавшие газы отводятся и охлажда­ются в охладителе системы EGR до температуры ниже 150 °С. Затем они смешиваются со све­жим воздухом и подаются в камеру сгорания. Уменьшение количества кислорода в свежей смеси и высокая теплоемкость рециркулирую­щих отработавших газов вследствие наличия в них составляющих Н2O и СO2 приводит к обра­зованию зоны горения, температура в которой, в зависимости от скорости рециркуляции от­работавших газов, снижена на несколько сотен градусов Цельсия. Благоприятными эффектами являются снижение содержания в выбросах ок­сидов азота NOх, а также снижение тепловых потерь и температуры компонентов цилиндра. Основной целью является снижение содержа­ния в отработавших газах токсичных продуктов.

Проблема, которую необходимо решить, заключается в транспортировке отработав­ших газов к стороне впуска свежего воздуха. Системы рециркуляции отработавших газов обычно применяются на двигателях с тур­бонаддувом. При этом имеют место два раз­личных подхода (рис. «Система рециркуляции отработавших газов (система EGR)» ).

В случае системы рециркуляции отработавших газов низкого давления отработавшие газы отбираются по­сле прохождения через турбину, охлаждаются и снова подаются в воздушный компрессор.

В случае системы рециркуляции отработавших газов высокого давления, которая, в частно­сти, предотвращает загрязнение компрессора и воздействие на него высоких тепловых на­грузок, рециркуляция отработавших газов осуществляется через сторону высокого дав­ления.

При этом между сторонами впуска и выпуска должен поддерживаться надлежащий перепад давления, иначе возникает ухудшение условий протекания цикла заряда. Иногда ис­пользуются также флаттерные клапаны, т.е. клапаны, воспринимающие пульсации давления и открывающиеся только в случае превышения определенного порога давления на стороне выпуска отработавших газов.

Применение системы EGR

Системы EGR низкого давления уже нашли применение на легковых и коммерческих автомобилях и продолжают совершенство­ваться.

Их привлекательными особенностями являются меньший неблагоприятный перепад давления (разность давлений на выходе из турбины и на входе воздушного компрессора).

Однако, во избежание загрязнения компрессора такие системы требуют установки впускного фильтра твердых частиц. Следует также отметить более высокие тепловые нагрузки, которым подвергается компрессор.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Полезные статьи по автодиагностике — Школа Пахомова

Постоянные читатели статей нашей Школы автодиагностики наверняка знают о моем пристрастии к мотортестерам. Это связано прежде всего с тем, что в основном мне приходится работать с подержанными автомобилями, иногда довольно старыми. И чаша весов при диагностике таких автомобилей часто склоняется в сторону мотортестера, а не сканера.

Однако в последние годы происходит невероятное: мотортестер находит применение на достаточно свежих машинах! И возникло это не на пустом месте.

Автопроизводители все больше делают из диагностов бездумных роботов, сокращая список переменных в потоке данных из электронного блока управления (ЭБУ).

И то, что раньше легко тестировалось сканером, сегодня опять приходится диагностировать при помощи мотортестера.

Далеко за примером ходить не нужно. Автомобиль  Infiniti QX70 30d, оснащенный дизельным мотором V6 3.0 V9X от Renault.

У этого автомобиля крайне неинформативная диагностика, и сканером в режиме Data Monitor читаются всего полтора десятка параметров. Приходится опять брать в руки мотортестер.

Все это из-за альянса Renault и Nissan, теперь и на японских автомобилях прослеживаются не самые удачные европейские тенденции.

Кстати, о тенденциях. Если вы давно занимаетесь диагностикой двигателей, то наверняка обратили внимание на интересный факт: все больше моторов оснащается турбонаддувом.

Ну, на дизельных двигателях он используется достаточно давно, и это оправдано. Однако в последние годы турбонаддув прочно обосновался под капотом бензиновых малолитражек.

Почему это произошло? Попробуем ответить на поставленный вопрос.

Прежде всего, цель турбонаддува, как в бензиновых, так и в дизельных двигателях — увеличить цикловое наполнение цилиндров воздухом. А увеличив наполнение воздухом и, соответственно, подачу топлива, можно усилить давление на поршень и получить более высокий крутящий момент и мощность двигателя. С одной стороны, все логично.

А с другой стороны, значительно усложняется конструкция двигателя и заметно снижается его ресурс. Не говоря уже о цене автомобиля: она, конечно же, растет.

Так в чем же «фишка» применения турбонаддува на бензиновых двигателях?

В ходе исследований выяснилось, что полное открытие дросселя используется водителями крайне редко.

Возникает интересная ситуация: в режимах частичных нагрузок, а они при движении автомобиля самые распространенные, наддува практически нет.

Водитель вынужден открывать дроссель на больший угол, а это приводит к уменьшению насосных потерь. Как следствие, увеличивается КПД двигателя и уменьшается выброс СО2.

Если рассматривать процесс внедрения турбонаддува с точки зрения борьбы за снижение эмиссии СО2, то оказывается, что турбированный мотор выгоднее. Его габариты и масса снижаются, но мощность при этом остается на прежнем уровне. Сегодня с двигателя объемом 1.4 л, оснащенного наддувом, снимают такую же мощность, что и ранее с атмосферного двигателя объемом 2 л.

Одним словом, внедрение турбонаддува обусловлено не повышением потребительских качеств автомобиля, а борьбой за снижение эмиссии диоксида углерода. У атмосферных моторов совершенно другая кривая крутящего момента, наиболее приемлемая для комфортного вождения. Но конечный потребитель, как правило, дилетант, и живет по рекомендациям маркетологов.

Систем турбонаддува разработано великое множество. Безусловно, для бензиновых и для дизельных двигателей эти системы различаются конструктивно, хотя бы в силу очевидной разницы этих моторов. Но все системы можно разделить как минимум на две большие группы, и критерием этого разделения будет управление давлением наддува.

Управление давлением наддува

Самое главное, что должен знать и понимать диагност, это принцип управления давлением наддува. По большому счету на сегодняшний день здесь можно выделить два типа систем:

  • регулирование с применением байпасного канала Waste Gate Turbine, WGT;
  • регулирование путем изменения геометрии направляющих лопаток Variable Geometry Turbine, VGT.
  • Рассмотрим вкратце обе конструкции.
  • Waste Gate Turbine

Для управления наддувом здесь используется непосредственно само давление наддува, создаваемое колесом компрессора.

Это давление подается на электропневматический преобразователь давления (ЭПД), который смешивает давление наддува с атмосферным давлением.

Иначе говоря, в выходной трубке ЭПД давление находится в диапазоне между атмосферным давлением и избыточным давлением, создаваемым турбиной.

Каково будет значение давления в выходной трубке ЭПД, зависит от скважности управляющих импульсов, подаваемых электронным блоком управления.

Итоговое давление воздействует на мембрану клапана регулирования давления наддува, приоткрывая либо наоборот, закрывая байпасный канал, тот самый Waste Gate.

В результате меняется поток газов через турбинное колесо, и соответственно, производительность компрессора.

  1. Схема с WGT используется преимущественно на бензиновых двигателях.
  2. Variable Geometry Turbine
  3. Такая схема используется преимущественно на дизельных двигателях.

Принцип регулирования здесь заложен очень простой и остроумный. Заключается он в поворачивании лопаток, направляющих поток отработавших газов на лопасти турбинного колеса. Лопатки соединены в единую систему с помощью кольца, в свою очередь кольцо перемещается под воздействием специального привода. Характеристика регулирования гораздо более гибкая, чем у систем с Waste Gate.

Если лопатки максимально сведены, то отработавшие газы поступают на периферию крыльчатки турбинного колеса, на самый его край, вызывая максимальную эффективность работы турбины с точки зрения рычага приложения силы.

И наоборот, для ограничения давления наддува лопатки разводят, поток газов направляется к центру турбинного колеса, минимально воздействуя на турбину. Скорость вращения турбокомпрессора уменьшается, давление наддува падает.

Перемещение лопаток осуществляется двумя способами:

  • Вакуумным приводом. Таких двигателей большинство из-за низкой стоимости и простоты привода;
  • Электрическим приводом.

Диагностика электрического привода не представляет собой больших сложностей. Как правило, при любых проблемах с этим типом привода в ЭБУ двигателя заносится соответствующий код неисправности. По сути диагностика сводится к проверке качества питания и массы мощной лампой, так как привод потребляет весьма большой ток.

Наибольшую сложность представляет собой вакуумный привод. Для управления положением лопаток используется вакуумный актюатор. Он использует вакуум, создаваемый вакуумным насосом двигателя.

Давление наддува турбины бензинового двигателя

Разберем логику работы такой системы. Начнем с ситуации, когда зажигание выключено и автомобиль неподвижен.

Преобразователь давления обесточен и находится в таком положении, что в полости вакуумного привода присутствует атмосферное давление. Чтобы сдвинуть привод с места, нужен вакуум, которого пока что нет.

Поэтому лопатки системы VGT разведены, что соответствует минимальному давлению наддува.

Читайте также:  124 двигатель ваз глохнет на холостых

Как только двигатель запустили, в магистрали появился вакуум, а на обмотку преобразователя давления из ЭБУ подается ШИМ-сигнал с коэффициентом заполнения 70%..90%.

В полости вакуумного привода появляется разрежение примерно 50..60 кПа. Этого достаточно, чтобы вакуумный привод полностью свел управляющие лопатки, что соответствует максимальному давлению наддува. В итоге даже при работе двигателя на холостом ходу турбокомпрессор уже «дует».

Если частота вращения коленчатого вала растет, то растет и давление наддува. ЭБУ контролирует значение давления наддува, и, когда оно приближается к заданному, начинает разводить лопатки. Для этого на ЭПД подается ШИМ-сигнал с меньшим коэффициентом заполнения, и часть вакуума из полости вакуумного привода стравливается в атмосферу.

При диагностике такой системы главным образом используется вакуумметр. Проверяемая цепь выглядит так: вакуумный насос – преобразователь давления – вакуумный привод лопаток.

Первым шагом проверяется исправность вакуумного насоса. В магистраль между ЭПД и вакуумным насосом устанавливается вакуумметр. При исправном вакуумном насосе в этой точке разрежение составит 80 кПа или более. Это вакуум, создаваемый насосом.

Вторым шагом вакуумметр подключается к магистрали между ЭПД и вакуумным приводом. Здесь разрежение при работе двигателя на холостом ходу должно быть примерно 50..60 кПа.

Описанная ситуация будет наблюдаться при полностью исправной и герметичной системе. При неисправности ЭПД или негерметичности магистрали нужно анализировать значение разрежения и выстраивать дальнейшую логическую цепь поиска.

Работаем Автоскопом

А теперь давайте вернемся к разговору о методиках диагностики турбонаддува двигателя автомобиля Infiniti QX70. Так как выводимых на сканер параметров недостаточно для нормальной работы, можно проверить функционирование ЭПД при помощи мотортестера.

В качестве вакуумметра будем использовать датчик разрежения, а скважность будем наблюдать по осциллограмме ШИМ-сигнала. Вот так это выглядит под капотом: Давление наддува турбины бензинового двигателя Давление наддува турбины бензинового двигателя

Один щуп подключим к управляющему ШИМ-сигналу с ЭБУ, это канал 1. Датчик разряжения устанавливаем на выходную трубку преобразователя давления, канал 2.  Вначале пусть двигатель поработает на холостом ходу, затем выжмем «в пол» педаль акселератора.

Пару слов обязательно следует сказать о ШИМ-сигнале, который мы наблюдаем на осциллограмме. Так как управление преобразователем давления идет путем подключения одного из выводов его обмотки к массе, активная фаза ШИМ-сигнала соответствует низкому уровню сигнала.

Обратимся к осциллограмме. Это участок, соответствующий холостому ходу: Давление наддува турбины бензинового двигателя

Скважность ШИМ-сигнала составила 76%, а формируемое преобразователем разрежение 0,6 бар. Лопатки механизма VGT максимально сведены. Теперь нажмем на педаль акселератора: Давление наддува турбины бензинового двигателя

Скважность снизилась до 29%, а значение разрежения, в свою очередь, до 0,18 бар. Лопатки разведены, чтобы снизить давление наддува. А вот так выглядит осциллограмма, если ее максимально сжать по горизонтали: Давление наддува турбины бензинового двигателя

Отлично видно, как ЭБУ, меняя коэффициент заполнения ШИМ-сигнала, изменяет величину разряжения на вакуумном приводе VGT.

Следует отметить, что ЭПД – пожалуй, самое слабое звено системы турбонаддува и выходит из строя с завидной регулярностью.

Разумеется, в рамках одной статьи невозможно охватить все существующие конструкции систем турбонаддува, описать методики их диагностики и типичные дефекты. Мы рассмотрели лишь диагностику вакуумного привода системы VGT с применением мотортестера.

Вся информация о диагностике систем турбонаддува содержится в обучающем курсе нашей Школы, который так и называется, «Диагностика турбонаддува». Изучите его!

Дмитрий Чекмарев, Алексей Пахомов

Описание и принцип работы турбонаддува двигателя

Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства – турбокомпрессора (турбины).

Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива.

В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых.

Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала.

Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Давление наддува турбины бензинового двигателяПринцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан – регулирует подачу отработавших газов;
  • Дроссельная заслонка – регулирует подачу воздуха на впуске;
  • Турбокомпрессор – повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер – охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления – фиксирует давление наддува в системе;
  • Впускной коллектор – распределяет воздух по цилиндрам;
  • Соединительные патрубки – необходимы для крепления элементов системы между собой.

Принцип работы турбонаддува

Давление наддува турбины бензинового двигателяСхема работы турбонаддува двигателя

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий  из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе.

Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом.

В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название “турбояма”. Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка – “турбояма”. Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от “турбоямы”:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Давление наддува турбины бензинового двигателяТурботаймер

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему – возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.

(7

Что такое турбонаддув — ДРАЙВ

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов.

Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность.

И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Читайте также:  Два двигателя работают на общий вал

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере.

Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего.

А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler.

Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха.

Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало.

Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов.

Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора.

Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры.

Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами.

Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора.

Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность.

Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%.

Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя.

Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации.

В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже.

Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух.

Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь.

А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель.

Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла.

В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно.

Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа.

Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку».

Ту самую, с маленьким, едва заметным шильдиком «turbo».

Ссылка на основную публикацию
Adblock
detector