Датчики обеспечивающие работу двигателя

Когда говорят, что современные автомобили это компьютеры на колесах, вас не обманывают.

В какой-то мере это действительно так. Но под абстрактным словом компьютер скрываются вполне конкретные устройства, способные передать водителю информацию о состоянии отдельных узлов двигателя.

  • Конечно, здесь речь идет именно о датчиках, без которых сегодня, пожалуй, не выпускается ни одна машина.
  • Другое дело, что набор датчиков может отличаться не только от марки к марке авто, но и от их комплектации.
  • Поэтому мы расскажем о наиболее популярных и распространенных видах.

Датчик массового расхода воздуха (ДМРВ)

  1. Его функция учитывать количество поступающего воздуха в камеры сгорания смеси топлива.
  2. Устанавливается, как правило, перед дроссельной заслонкой после воздушного фильтра.

  3. В разных автомобилях этот тип датчиков может быть представлен в проволочном, мембранном или объемном исполнении, при этом его функции отличаться не будут.
  4. Проблемы с ним выражаются в повышенном расходе топлива, затрудненный запуск двигателя, низкие обороты на холостом ходу,
    падение мощности двигателя.

Кстати, это самый дорогой датчик из нашего списка. Цена даже для отечественных автомобилей в районе 5 тысяч рублей.

Датчики обеспечивающие работу двигателя

Датчик положения коленчатого вала (ДПКВ)

Если он выйдет из строя, то автомобиль не получится эксплуатировать до устранения неполадки. Пожалуй, в этом и состоит его существенное отличие от остальных видов.

Он выполняет одну архи важную функцию фиксирует положение коленчатого вала и передает информацию на ЭБУ (тот самый абстрактный компьютер). В свою очередь ЭБУ корректирует объем смеси топлива, поступающего в двигатель, время подачи этого топлива, угол опережения зажигания и угол поворота распредвала.

Как вы понимаете, если датчик, то сегодня вы едете на такси

Определить неисправность легко: двигатель или не запускается совсем, или сразу глохнет в первые секунды. На ранней стадии – отсутствие холостого хода.

Датчики обеспечивающие работу двигателя

Датчик температуры охлаждающей жидкости (ДТОЖ)

Его можно сравнить с природным газом. Странно, не так ли? Возможно, но газ в необработанном виде не имеет цвета и запаха, а значит, вдыхая его, человек даже не заметит, как постепенно будет умирать. Неисправный ДТОЖ не передаст информацию в ЭБУ, а он не запустит вентилятор, когда двигатель нужно будет остужать. Итог печален и урон несоразмерен со стоимостью нового датчика.

Как определить? Только по перегретому двигателю: рывки при ускорении, затрудненный запуск, завышенные обороты на холостом ходу, снижение мощности.

Датчики обеспечивающие работу двигателя

Датчик положения дроссельной заслонки (ДПДЗ)

Это небольшое устройство контролирует объем подачи топлива, фиксируя положение дроссельной заслонки. В зависимости от угла поворота заслонки меняется напряжение и передается на ЭБУ. Находится на корпусе дроссельной заслонки.

С высокой долей вероятности, определить неисправность не составит труда: неровный холостой ход, затрудненный запуск ДВС, заметное падение оборотов после перегазовки, обороты зависают после нажатия на педаль газа.

Понаблюдайте за своим автомобилем. Возможно, ДПДЗ скоро окончательно выйдет из строя.

Датчики обеспечивающие работу двигателя

Регулятор холостого хода (РХХ)

Как следует из названия, этот датчик обеспечивает работу двигателя в тот момент, когда дроссельная заслонка закрыта. Он же отвечает за работу двигателя в прогретом состоянии и позволяет начать движение, не дожидаясь доведения ДВС до рабочих температур.

Если с ним что-то не так, то автомобиль может запускаться только при нажатии педали газа.

Датчики обеспечивающие работу двигателя

Датчик кислорода (лямбда зонд)

Расположен на приемной трубе глушителя. Его задача анализировать состав отработанных газов и определять уровень несгоревшего кислорода (если таковой вообще есть). При наличии избыточного кислорода бедная топливная смесь, при отсутствии богатая. Показания датчика кислорода используются для корректировки подачи топлива.

Датчики обеспечивающие работу двигателя

Признаки неисправности: запоздалая реакция двигателя на педаль газа, снижение мощности, повышенный расход топлива.

Датчик детонации

Нужен для того, чтобы ЭБУ выставлял корректный уровень опережения зажигания. Установленный в блоке цилиндров, он получает данные из камер сгорания.

Признаки неисправности классические – потеря мощности, увеличенный расход топлива и повышенная температура двигателя.

Датчики обеспечивающие работу двигателя

Выводы

Как вы обратили внимание, вне зависимости от типа датчика, его поломка или постепенный выход из строя сопровождается схожими последствиями потерей мощности, повышенным расходом топлива, проблемами с запуском.

Если вы сталкиваетесь со схожими трудностями, самое время посетить сервис и провести компьютерную диагностику на ней проблемы с датчиками идентифицируются вполне отчетливо.

Основные датчики в двигателях современных автомобилей и какие функции они выполняют

Современные автомобили — это высокотехнологичная техника, в которой работа многих основных узлов полностью управляется электроникой. Революцией в моторостроении стало появление инжекторной технологии подачи топлива, после чего количество различных датчиков в двигателе существенно увеличилось.

Основной блок управления автомобилем анализирует данные с различных модулей в моторе, принимая решение по увеличению или уменьшению оборотов, консистенции смеси и ряду других параметров. В этой статье мы расскажем вам об основных датчиках, которые используются в двигателях современных автомобилей.

Датчики обеспечивающие работу двигателя

Используемые в двигателях датчики

Датчик кислорода располагается не в самом моторе, а в выпускной системе.

При этом у многих современных автомобилей имеется даже два и более таких модулей, что объясняется не только необходимостью оценки состояния выхлопа, но и требованиями экологии.

Первый датчик обычно устанавливается перед катализатором, а второй уже после такого фильтра, и в зависимости от рассчитанных показателей блок управления работой может вносить соответствующие корректировки в степень обогащения топливной смеси.

Датчик детонации определяет в камере сгорания уровень детонации, и при её определении снижает обороты или же сигнализирует автовладельцу о необходимости прочистки бака и выполнения других ремонтных работ. Появление такой детонации приводит к повышенной нагрузке на двигатель, возникать она может по причине использования не слишком качественного топлива, так и нарушения опережения зажигания.

Датчик положения распредвала определяет положение цилиндров в их верхней точке. Полученные данные позволяют блоку управления впрыском подавать топливно-воздушную смесь в тот или иной цилиндр и правильно включать зажигание. Наличие этого датчика позволяет несколько улучшить мощностные характеристики современных двигателей.

Датчик коленвала рассчитывает обороты и положение коленчатого вала двигателя.

Важность этого электронного блока понимают практически все без исключения автовладельцы, так как выход из строя коленвала и его неправильное положение может привести к серьезным поломкам, вплоть до необходимости выполнения капитального ремонта двигателя. Данные о положении коленвала также используются системой впрыска или же для установки угла опережения зажигания.

Датчики обеспечивающие работу двигателя

Датчик дроссельной заслонки считывает положение дросселя. Расположение заслонки будет напрямую зависеть от интенсивности нажатия на педаль акселератора. Полученные данные используются для корректировки объема подачи топлива.

Датчик массового расхода топлива находится в системе подачи кислорода непосредственно за воздушным фильтром. Наличие такой электроники позволяет правильно готовить топливно-воздушную смесь, а в последующем основной блок управления может корректировать подачу топлива или правильно подбирать обороты мотора на холостом ходу.

Датчик давления масла определяет уровень и давление в системе, своевременно предупреждая автовладельца о наличии проблем и нехватке смазки. Необходимо помнить, что при наличии подобной сигнализации следует незамедлительно заглушить двигатель и на эвакуаторе доставлять автомобиль в сервис для ремонта.

Датчик скорости определяет частоту вращения вала, позволяя не только отображать текущую скорость на спидометре, но и передает информацию в блок управления, для совместной работы с другими системами двигателя.

Датчик абсолютного давления устанавливается во впускном коллекторе, позволяя при необходимости корректировать топливно-воздушную смесь, обедняя или обогащая её состав.

Подведём итоги

Двигатели современных автомобилей имеют различные датчики, которые позволяют обеспечить необходимую экологичность, хорошую мощность мотора и сокращают расход топлива. Данные с таких модулей используются основным блоком управления, а при появлении каких-либо неисправностей система выводит на приборной панели или экран мультимедиа соответствующие надписи.

13.12.2019

Датчики управления двигателем автомобиля, их диагностика

Датчики обеспечивающие работу двигателя

Для устранения неисправностей существуют базовые схемы проверок различных компонентов. В статье «Диагностика: датчики управления двигателем автомобиля» мы расскажем, как вести себя с теми или иными приборами, контролирующими работу мотора.

Читайте также:  Centurion сигнализация с запуском двигателя

Датчик температуры мотора

Датчик температуры охлаждающей жидкости — датчик температуры мотора (ДТМ), но выглядит в виде термистора, т. е. полупроводникового резистора, его сопротивление изменяется в зависимости от температуры.

Датчик вворачивается в проточный патрубок охлаждающей системы мотора  и постоянно присутствует в потоке охлаждающей жидкости. Когда температура жидкости низкая датчик имеет высокое сопротивление (примерно 100 кОм при ~44 °С), а когда температура высокая наоборот — низкое (11—34 Ом при 140 °С).

ЭБУ мотора через сопротивление определенной величины подает к датчику стабилизированное напряжение в размере 5 В и при помощи делителя измеряет падение напряжения на приборе. На холодном двигателе оно будет высоким, а когда мотор прогрет — низким.

По измеренному снижению напряжения на приборе, блок управления определяет температурный показатель охлаждающей жидкости. Данный показатель влияет на работу множества систем, которыми управляет автоматика.

К примеру, по температуре мотора корректируется состав воздушно-топливной смеси (ВТ-смеси): для холодного мотора смесь должна быть более обогащенной, для прогретого более обедненной. По температуре двигателя также корректируется угол опережения зажигания.

Плохое соединение (обрыв) в цепи датчика охлаждающей жидкости передастся в блок управления как низкая температура мотора. ВТ-смесь при этом сильно обогатиться обогащается, и мотор начинает работать менее экономично, загрязняет при этом окружающую среду. В памяти ЭБУ-Д (в регистраторе неисправностей) будет записан код, в расшифровке имеющий вид «Работа мотора на более богатой ВТ-смеси».

Неисправность датчика температуры жидкости или замыкание в цепи интерпретируется в ЭБУ мотора  как перегрев. Система впрыска горючего будет формировать ВТ-смесь, которая переобеднена, и работа мотора станет неустойчивой. В памяти регистратора блока управления запишется код неисправности «Работа мотора на бедной ВТ-смеси».

Подобный датчик охлаждающей жидкости надо проверять в таких случаях, как:

  • негаснущая контрольная лампа «перегрев мотора» (если имеется);
  • обнаружение в регистраторе неисправности соответствующих кодов;
  • повышенный расход топлива, детонация или повышенная концентрации в выхлопных газах СО;
  • затрудненный пуск, неустойчивая работа или остановка мотора на холостом ходу.

  Также при тестировании механизмов существует необходимость в использование технической документации для отдельно взятого авто или встроенное в ПО диагностических приборов пути неисправностей, дающие полную картину прошедшей проверки.

Устранения неисправностей и использование S.A.I.S. AUTODATA в поиске.

Перед тем как проверять датчик температуры охлаждающей жидкости стоит убедиться в правильности работы системы охлаждения мотора.

Система охлаждения должна быть корректно заправлена жидкостью «охлаждения». Резервуар расширителя и радиатор должны быть по норме заполнены.

Крышку радиатора стоит снимать только на остывшем моторе, иначе охладитель, у которого температура работы более 100 С может причинить вам ожоги.

Для простого функционирования датчика управления его механическая часть должна постоянно находиться в охлаждающей жидкости.

  Крышка радиатора должна герметично закрываться, иначе в системе могут быть  образованы воздушные «карманы» и показания прибора будут искажены.

  Состав охладителя должен по всем показателям соответствовать рекомендациям производителя. Зачастую используется смесь 50% антифриза и 50% воды. По теплопроводности такая смесь считается оптимальной.

  Вентилятор должен правильно работать, чтобы мотор не перегревался. Если в системе охлаждения присутствует  электроконтактный термовыключатель или термостат, то необходимо убедиться в их полной способности к работе.

Диагностика датчиков температуры жидкости при помощи сканера Bosch KTS.

Фирма BOSCH (Германия)- мировой лидер на рынке диагностических датчиков для автомобилей. Применение передовых технологий, сотрудничество с автомобильными концернами, огромный опыт работы, позволило фирме BOSCH создать себе бренд изготовителя качественного и надежного оборудования. Следствием выполненной работы, является системная диагностика ESI[tronic] и KTS.

Все механизмы состоят из набора необходимых для работы кабелей и аппаратной части мультиплекора.

Постоянное развитие ESI позволяет обновлять список диагностируемых блоков управления машиной, что дает возможность с уверенностью браться за работу почти с любой машиной.

Итак, на сегодня огромный охват: 65 марок автомобилей , 1350 типов автомобилей, 145 автомобильных систем, около 17000 блоков управления.

Все это оборудование вполне удобно, позволяет быстро освоить все возможности и имеет понятное управление. Нет никаких сомнений в том, что этот продукт является самой универсальной и качественной системной диагностических датчиков.

Протоколы поддерживаемые Bosch KTS540:

  • ISO 15765-4 (OBD)
  • CAN ISO 11898
  • ISO 9141-2 (K/L lines)
  • SAE-J1850 SPC
  • SAE-J1850 DLC
  • Blink-code
  • Low Speed CAN, Middle Speed-, High Speed-, CAN Single Wire

Возможности:

  • Базисные настройки
  • Сброс сервисных интервалов
  • Управление исполнительными механизмами
  • Вывод текущих данных в графическом или цифровом виде
  • Идентификация блоков (№ софта, название фирм производителя, …)
  • Удаление/чтение кодов ошибок и их расшифровка

  Сканер отлично подойдет для диагностики опций всех приборов, включая датчик температуры охлаждающей жидкости.

Интерфейс этой программы весьма прост и дает обширную информативность для устранения и поиска неисправности системы управления мотором.

На дисплей монитора ноутбука или компьютера в составе KTS Bosch, который подключен к диагностическому бортовому разъему, выводятся значения датчика температуры в текущий период.

Датчик положения заслонки дросселя

Датчик положения заслонки дросселя устанавливается на дроссельном патрубке сбоку и связан с дроссельной заслонкой (точнее ее осью). Датчик выглядит в виде трех-выводного потенциометра, на один его вывод подается плюс стабилизированного напряжения 6 В, а другой вывод подразумевает за собой массу.

С третьего вывода от ползунка (потенциометра) снимается сигнал для блока управления. Когда при воздействии, на педаль управления заслонка дросселя поворачивается, на выходе датчика напряжение изменяется. Когда заслонка закрыта оно ниже 1 В.

Когда заслонка переходит в открытое положение, напряжение на выходе датчика повышается и при полностью открытой заслонке должно быть более чем 5 В. Отслеживая напряжение датчика на выходе, ЭБУ корректирует количество топлива впрыснутого форсунками в зависимости от градуса угла открытия заслонки дросселя.

Так в системах питания топлива с электронноуправляемым впрыском выполняется акселерация. В подавляющем большинстве случаев датчик положения заслонки дросселя не требует никакого регулирования, так как ЭБУ воспринимает холостой ход, как начальную отметку.

Однако датчики положения заслонки дросселя отдельных производителей все-таки нуждаются в некоторой настройке, которая в таком случае выполняется по методике и спецификации производителя. Эта процедура проверки не очень подходит для диагностики заслонки дросселя с электронным управлением.

Датчик концентрации кислорода

В современных машинных моторах, которые снабжены каталитическим нейтрализатором и системой впрыска топлива, надо точно следить за составом топливовоздушной смеси и поддерживать коэффициенты переобогащения воздуха на допустимом уровне (Лямбда равна 1), чем обеспечиваются уменьшение содержания токсичных веществ и экономия топлива.

Для этого применяются ДКК (датчики управления концентрацией кислорода), которые устанавливаются системе отвода выхлопных газов и вырабатывают сигнал, который зависит от концентрации кислорода в выхлопном газе.

Когда изменяется концентрация кислорода в выхлопных газах датчики концентрации кислорода формирует выходное напряжение, изменяемое приблизительно на 0,1В (содержание кислорода высокое— смесь бедная), до 0,9 В (низкое содержании кислорода — смесь богатая). Для правильной работы датчик должен иметь температуру выше, чем 300 °С.

Поэтому после запуска двигателя для быстрого прогрева датчика управления, в него встроен нагревательный прибор. Сигнал от ДКК используется в блоке управления мотором для правки длительности открытого состояния форсунок и контроля стехиометрического состава смеси.

Зачастую используются титановые и циркониевые датчики концентрации кислорода, их работа основывается на том факте, что у них остается постоянным выходное напряжение (равно оно 0,45 В при а приблизительно равном ~1), однако может поменяться скачком от 0,1 В до 0,9 В если изменился коэффициент (в диапазоне Лямбда= 0,99…1,1) избытка воздуха.

Есть несколько вариантов датчиков концентрации кислорода.

  1. Датчик с заземляемым корпусом и одним потенциальным выводом. От потенциального вывода сигнал поступит в блок управления. В качестве второго провода используют «массу» автомашины.
  2. Датчик с парой потенциальных выводов. Здесь измерительная цепь не связана с «массой» авто, а работает только второй провод.
  3. Датчик с установленными тремя выводами, на одном из них — измерительный сигнал, два оставшиеся — питание электронагревателя. В качестве «земли» выступает «масса» авто.
  4. Датчик, у которого четыре вывода. Здесь, и датчик, и нагреватель изолированы от «массы».
Читайте также:  Бортовой компьютер показывает неисправность двигателя

Диагностирование датчика концентрации  кислорода при помощи сканера Bosch

Процедура диагностирования заключается в следующем.

  1. Подключить сканер к разъему диагностики машины,
  2. Хорошо прогреть датчик концентрации кислорода и двигатель в режиме холостого хода, потом поднять обороты до 3000 об/мин.
  3. Убедиться, что системы управления мотором работают в замкнутом режиме, затем:
  4. Устанавливаем на сканере режим осциллографа параметров датчика концентрации кислорода
  5. Анализируем параметры работы всех датчиков

При исправности датчика ДКК и системы подачи топлива амплитуда сигнала должна плавно колебаться с частотой 4—19 Гц  при постоянной скорости вращения коленчатого вала мотора. Нижний уровень должен быть в диапазоне 0,15—0,4 В, верхний — между 0,5—0,8 В.

  • Неисправности, которые приводящие к неверным показаниям датчика кислорода при диагностике датчиков управления двигателем автомобиля.
  •  Стоит напомнить, что датчик кислорода реагирует на давление кислорода в отработанном газе, а не на наличие горючего, поэтому в ряде случаях датчик кислорода может ложно индицировать либо богатую, либо бедную смесь.
  • При пропуске зажигания (к примеру, закокосована или неисправна свеча) кислород не вступивший в реакцию горения поступит в выпускной коллектор, в нем датчик кислорода может ложно зарегистрировать обеднение воздушно-топливной смеси.
  • Если выпускной коллектор будет не герметичный, то датчик кислорода будет снимать показатели с кислород воздуха, который поступил извне.

В любом случае ЭБУ мотора реагирует на ложное обеднение воздушно-топливной смеси как на правдивое и автоматически повышает в цилиндры подачу топлива. Это может привести к забрызгиванию свечей, к значительному перерасходу топлива и к пропускам воспламенения.

Датчик кислорода может выдать не правдивый сигнал об обогащении топливной смеси, если датчик «отравлен». Отравление может наступить при появлении вредных веществ в коллекторе, что вызовет постепенный выход его из строя прибора или изменение его статических характеристик.

Чаще всего отравляют датчика свинец (РЬ) или кремний (Si).

Ложное обогащение может быть и при поломанном перепускном клапане в системе рециркуляции отработанных газов, со стороны высоковольтного близкорасположенного провода системы зажигания от электрических наводок, а также, если датчика кислорода плохо заземлен.

Похожие материалы

Датчики

Описание работы датчика кислорода
Лямбда-зонд (датчик кислорода) устанавливается в потоке отработавших газов двигателя и служит для определения наличия кислорода в отработавших газах.

Когда двигатель работает на обогащённой топливо-воздушной смеси, уровень содержания кислорода в отработавших газах понижен, при этом датчик кислорода генерирует сигнал высокого уровня напряжением 0,65…1,0V.

Как ни странно, но многие дорожно-транспортные происшествия происходят из-за высокой эффективности тормозной системы автомобиля.

Причиной этого является то, что экстренное торможение может привести к полной блокировке колёс.

На большинстве современных бензиновых двигателей применяются системы индивидуального зажигания.

Данная система зажигания отличается от классического зажигания и от DIS-системы зажигания тем, что каждая свеча зажигания в такой системе обслуживается собственной (индивидуальной) катушкой зажигания. В зависимости от устройства сердечника, индивидуальные катушки зажигания делятся на два типа – компактные, и стержневые.

На валу распределителя зажигания закреплены шторки из ферромагнитного материала, вращающиеся вместе с валом. Количество шторок равно количеству цилиндров двигателя (встречаются системы зажигания с одной шторкой в распределителе зажигания, дополнительно оборудованные датчиком положения / частоты вращения коленчатого вала).

Выходной сигнал датчика Холла может принимать один из двух уровней – высокий или низкий и зависит от наличия / отсутствия шторки в магнитном зазоре датчика. При отсутствии шторки в магнитном зазоре датчика, напряжение выходного сигнала датчика соответствует низкому уровню – не более 0,2 V.

При прохождении шторки через магнитный зазор датчика, напряжение выходного сигнала датчика соответствует высокому уровню. Значение напряжения высокого уровня определяется поступающим на датчик опор. напряжением. Датчик генерирует синхроимпульсы синхронно прохождению шторок через магнитный зазор датчика. Форма осциллограммы напряжения выходного сигнала датчика Холла близка к меандру. Частота следования синхроимпульсов пропорциональна частоте вращения вала с ферромагнитными шторками.

Датчик положения коленчатого вала служит для определения положения и частоты вращения коленчатого вала, что необходимо для синхронизации системы зажигания и впрыска топлива. auto.schoollremonta.ru Датчик коленвала расположен напротив специального синхродиска, укреплённого на коленчатом валу.

Синхродиск имеет 60 зубьев, 2 из которых отсутствуют. Начало 20-го (после выреза) зуба синхродиска совпадает с верхней мертвой точкой первого или четвертого цилиндров. Зазор между торцом датчика коленвала и зубьями диска составляет 0,8…1,0 mm. Сопротивление обмотки датчика составляет ~900 Ω.

Датчик коленвала представляет собой обмотку из медного провода, внутри которой расположен намагниченный сердечник. Датчик коленвала генерирует синхроимпульсы напряжения синхронно прохождению зубьев синхродиска мимо торца датчика коленвала.

Форма осциллограммы напряжения выходного сигнала датчика положения коленчатого вала близка к синусоиде. Амплитуда напряжения и частота следования синхроимпульсов пропорциональны частоте вращения двигателя. При работе двигателя на оборотах холостого хода, амплитуда напряжения синхроимпульсов должна быть не менее ±6 V.

В режиме прокрутки двигателя стартером, амплитуда напряжения синхроимпульсов должна быть не менее ±0,5 V. В момент прохождения сектора синхродиска с вырезом мимо датчика, осциллограмма имеет следующий вид.

Датчик расхода воздуха служит для измерения количества (объёма или массы) потребляемого двигателем воздуха. Значение массы входящего воздуха, измеренное непосредственно датчиком массового расхода воздуха или рассчитанное блоком управления двигателем по его объему, является одним из базовых параметров в определении длительности открытия топливных форсунок.

Датчик расхода воздуха устанавливается после воздушного фильтра перед дроссельной заслонкой. Со стороны входной части корпуса датчика расхода воздуха расположена сетка или ламинирующие соты, выравнивающие поток воздуха по всей площади воздухомера.

Существуют различные конструкции датчиков расхода воздуха, но каждый из них можно отнести к одному из двух типов — датчики объёмного расхода воздуха, и датчики массового расхода воздуха.

Датчики массового расхода воздуха (ДМРВ) более предпочтительны, так как измеряют непосредственно массовый расход воздуха (ДМРВ учитывает температуру и давление атмосферного воздуха), за счёт чего блок управления двигателем может более точно рассчитывать необходимое количество впрыскиваемого топлива.

Чувствительный элемент датчика положения дроссельной заслонки представляет собой потенциометр, ось которого жёстко связана с осью дроссельной заслонки. На питающие выводы потенциометра подается опорное напряжение +5 V и «масса», а подвижный контакт датчика является сигнальным.

Выходной сигнал датчика положения дроссельной заслонки является одним из базовых для расчёта блоком управления двигателем необходимого количества топлива, для определения текущего режима работы двигателя и для расчёта оптимального угла опережения зажигания.

Например, в режиме пуска двигателя количество подаваемого топлива рассчитывается по температуре двигателя, по степени открытия дроссельной заслонки и по фактической частоте вращения коленвала. На работающем двигателе при закрытой дроссельной заслонке блок управления двигателем переходит в режим стабилизации частоты вращения коленчатого вала двигателя — режим поддержания холостого хода.

Заданная частота вращения коленвала при этом зависит от температуры охлаждающей жидкости, от нагрузки на двигатель и от скорости движения автомобиля и регулируется путём изменения степени открытия регулятора холостого хода и изменения угла опережения зажигания.

Почти все системы управления двигателем, в которых не применяется датчик расхода воздуха, оборудованы датчиком абсолютного давления во впускном коллекторе (датчик разрежения). Внешний вид датчиков абсолютного давления В таких системах, на основании данных о давлении и температуре воздуха во впускном коллекторе, блок управления двигателем рассчитывает массу воздуха, содержащуюся в каждом сантиметре кубическом внутреннего объёма впускного коллектора. При каждом такте впуска, цилиндр «всасывает» разрежённый воздух из впускного коллектора, объём которого приблизительно равен внутреннему объёму цилиндра двигателя. Зная внутренний объём цилиндра двигателя (в cm3) и предварительно рассчитав плотность всасываемого цилиндром воздуха (в g/cm3), блок управления двигателем рассчитывает массу воздуха (в граммах), попадающего в цилиндр во время такта впуска. В соответствии с рассчитанной массой потребляемого двигателем воздуха, блок управления двигателем формирует импульсы управления топливными форсунками соответствующей длительности, достигая приготовления топливовоздушной смеси с составом, близким к заданному.

Читайте также:  Автозапуск двигателя автомобиля схемы

В зависимости от температуры охлаждающей жидкости, блок управления двигателем корректирует состав топливовоздушной смеси, частоту вращения коленчатого вала двигателя на холостом ходу, угол опережения зажигания… Влияние показаний датчика температуры охлаждающей жидкости на работу системы управления двигателем очень велико.

Например, если вследствие неисправности рассчитанное блоком управления двигателем значение температуры охлаждающей жидкости двигателя не совпадает с фактической температурой охлаждающей жидкости двигателя на значительную величину, двигатель может заглохнуть / не запускаться.

Большинство датчиков температуры воздуха во впускном тракте аналогичны по устройству и принципу действия датчику температуры охлаждающей жидкости. В зависимости от температуры воздуха во впускном тракте, блок управления двигателем несколько корректирует состав топливовоздушной смеси.

Влияние показаний датчика температуры воздуха во впускном тракте на работу системы управления двигателем особенно заметно в таких системах, где не применяется датчик расхода воздуха.

Чертова дюжина автомобильных датчиков: 7 всегда врут и еще 6 — привирают

Спидометр, например, по определению немного превышает истинную скорость — так положено по ГОСТу.

В любом автомобиле — масса всевозможных датчиков. И практически все они врут! Одни — всегда, другие начинают обманывать с возрастом. Не верите?

Материалы по теме

Врут всегда

1. Датчик температуры двигателя

Материалы по теме

Практически всегда показывает температуру не двигателя, а охлаждающей жидкости. Устанавливается очень часто не в головку блока цилиндров (а это — самое горячее место двигателя!), а в патрубок, прикрепленный к головке.

Мало того, этот патрубок часто выполняют не металлическим, а из термостойкой пластмассы. А теперь представим себе, что антифриз вообще вытек из системы.

Двигатель нагревается до высоких температур, а датчик меряет температуру в пустом пластиковом патрубке… И что от этого толку?

Справедливости ради отметим, что на некоторых моторах датчик ввернут в тело головки блока цилиндров. Пример — двигатели задне- и полноприводных ВАЗов. А еще встречался датчик, измерявший непосредственно температуру ГБЦ.

 Так, на фордовских моторах Zetec-Е датчик вворачивался в гнездо головки с заданным моментом и «чувствовал» температуру за счет непосредственного контакта носика с металлом головки.

Вот он действительно показывал температуру двигателя — правда, только в одной точке.

2. Датчик скорости

Речь, понятное дело, о спидометре. Он врет, что называется, по ГОСТу.

Врет всегда, причем на стандартных шинах — и это приветствуется! Дело в том, что любой прибор изначально имеет погрешность измерений — как в плюс, так и в минус. Поэтому «чайник» может превысить скорость, сам того не подозревая.

А любители нарушать скоростной режим всегда готовы переложить собственную вину на спидометр: мол, ничего я не превышал — по прибору было всего лишь 60!

Материалы по теме

Чтобы предотвратить даже теоретическую возможность «нечаянного» превышения скорости, спидометр на заводе регулируют так, чтобы он никогда не занижал истинного значения скорости. Именно поэтому он и показывает ее с небольшим превышением. Кстати, в электронный блок управления двигателем отсылается обычно правильное значение скорости.

Любое самовольное изменение диаметра колес мгновенно скажется на показаниях спидометра и одометра. Но такая переделка запрещена законом.

3. Датчик кислорода

Казалось бы, такой прогрессивный, весь из себя экологичный прибамбас. Но — нет. Достаточно неравномерного распределения воздуха либо топлива по цилиндрам, как он начинает врать. Где-то льет форсунка, где-то негерметичен впускной трубопровод, где-то барахлит свеча или упала компрессия, ну а в среднем по больнице всё может казаться хорошо. Даже у нового автомобиля не может быть четырех абсолютно одинаковых цилиндров. И лямбда-зонд, по-хорошему, должен быть у каждого цилиндра свой, чтобы корректировать состав смеси только в нем. Такие моторы встречались еще в девяностых годах прошлого века, когда борьба за экологию только начиналась.

Материалы по теме

А еще нормальной работе датчика может помешать человек. Неквалифицированные ремонтники могут испортить кислородный датчик, например, применив при сборке мотора силиконовые герметики, которые его «отравят».

И уж совсем невеселая жизнь у второго (диагностического) датчика кислорода. Если автомобиль уже в годах и каталитический нейтрализатор вырезан, то его все время норовят обмануть.

Кто-то ставит обманки с дросселирующими отверстиями, кто-то — с кусочками нейтрализаторов. А иные норовят отключить его программно.

4. Датчик давления масла

Оптимист, каких мало. Реагирует на давление масла меньше, чем 0,5 бара, включая красную контрольную лампу аварийного давления. И только.

Он не способен предупредить водителя о том, что даже на больших оборотах двигателя давление всего лишь 0,6 бара. Он показывает, что всё ОК. Жаль, но подшипники коленвала придерживаются иного мнения.

Впрочем, на современных машинах датчики давления масла всё чаще становятся «умными».

5. Датчик детонации

Материалы по теме

Ситуация — примерно как с датчиком кислорода. Работает, но не идеально. Например, на четырехцилиндровом моторе этот датчик ставится между вторым и третьим цилиндрами.

Конечно, вибрация в металле распространяется хорошо, однако ближайшие к датчику цилиндры «слышны» лучше. Поэтому датчик чувствует разные цилиндры по-разному.

Если во Владивостоке стукнуть по рельсу Транссиба, то в Москве этого не услышат…

Отметим, что на V‑образных двигателях сенсоров детонации ставят два — каждый на свой ряд цилиндров. Так им лучше слышно.

6. Датчик забортной температуры

Производители автомобилей устанавливают эти датчики в разных местах. Частенько — в районе переднего бампера. Но там датчик греется от дороги и, самое главное, от двигателя. Рядом — раскаленные радиаторы, которых может быть до пяти штук. Датчик греется от машины и врет. Понятно, что это далеко не самый главный прибор в автомобиле, но вранье неприятно всегда.

Второе популярное место для датчика температуры — в корпусе правого бокового зеркала. Порой в солнечный день ехать на восток теплее, чем на запад…

7. Датчик температуры в салоне

Если он один, то далеко не всегда работает корректно, будучи не в состоянии дать интегральную оценку температуры. Нужно учитывать и солнечную радиацию, и количество пассажиров. Недаром в премиальных автомобилях климат-контроль может работать с пятью и более датчиками температуры в салоне.

Врут от старости

1. Датчик положения коленвала

ДПКВ может получать импульсы от шкива коленчатого вала, маховика либо от задающего диска, установленного на коленвалу внутри двигателя.

И везде к нему клеится железосодержащая стружка, в результате чего со временем он начинает врать.

Сигнал становится нечетким, с перебоями, что снижает показатели двигателя: ведь это один из самых главных датчиков системы впрыска. Многие моторы без него вообще не работают.

2. Датчик положения распредвала

ДПРВ обеспечивает фазированный впрыск на простых моторах и определяет правильность работы фазовращателей, если таковые установлены. Сигнал становится некорректным при сильной вытяжке цепи и плохо работающих фазовращателях.

3. Датчик массового расхода воздуха

ДМРВ начинает врать при зарастании пылью. Особенно часто это наблюдается при некорректной замене или неправильной установке воздушного фильтра.

Материалы по теме

4. Датчик положения дроссельной заслонки

Любители вазовских впрысковых автомобилей помнят проблемы с этими датчиками. А все потому, что ДПДЗ — переменный резистор, отслеживающий угол поворота дроссельной заслонки. Дорожки изнашиваются — датчик лжет.

5. Датчик давления и температуры во впускном трубопроводе

Этот датчик врет при негерметичности впускного трубопровода. Такое случается при усохших прокладках, соскочивших шлангах, а также при обрастании пылью из-за негерметичности впускного тракта.

6. Датчики положения педалей тормоза и сцепления

Вроде бы — простейшие концевые выключатели, но на отечественных автомобилях они часто ломаются. Еще их повреждают владельцы, неграмотно установившие блокираторы рулевого вала. Запоры ломают датчики.

И еще про вранье

Датчик неровной дороги

Материалы по теме

Около двадцати лет назад его пытались внедрять на вазовских автомобилях с системой впрыска топлива.

Он должен был помогать ЭБУ отличать колебания угловой частоты вращения коленвала, передающиеся по трансмиссии при езде по сильно неровной дороге, от колебаний, вызванных неравномерностью работы других систем (например, пропуски зажигания). В итоге получилась экзотика, которая показывала непонятно что…

Датчик давления в системе кондиционирования

Самый демократичный датчик. У многих автомобилей он разрешает включение кондиционера, даже если хладагента совсем немного. И только когда хладагент закончится, он не дает включиться компрессору. Живой пример — редакционный Ларгус. Девять лет, 135 тысяч км пробега без единой заправки кондиционера, а он до сих пор включается… Правда, и холодит кондиционер еле-еле.

Кому верить?

Материалы по теме

Датчики, которые начинают дурить от старости, надо менять. К сомнительным показаниям термометров — как наружных, так и внутрисалонных — относитесь со снисходительностью: как умеют, так и работают.

Что касается датчиков, которые волей разработчиков просто не могут работать лучше, как из-за собственного несовершенства, так и вследствие их неудачной установки, - то от нас с вами тут ничего не зависит. Остается смириться.

С такими датчиками пусть общаются «взятчики», то есть электронные блоки управления. Глядишь, меж собой разберутся.

Фото на заставке: Depositphotos

Ссылка на основную публикацию
Adblock
detector