Давление впрыска в инжекторного двигателя

Современный автомобильный мир ушел на несколько шагов вперед. И это не удивительно, ведь только так можно оставаться на плаву и получать хорошую прибыль. Особенно это касается силовых установок, которые устанавливаются на автомобили.

Вы наверняка слышали такое словосочетание, как инжекторный двигатель. По сути, это всем известный карбюратор, только немного видоизмененный.Давление впрыска в инжекторного двигателя

В нем также происходит процесс сгорания топлива и выделение мощности. Единственное отличие инжектора заключается в новой инжекторной системе подачи топливовоздушной смеси.

История

Многие знают, что первая система по образованию топливовоздушной смеси называлась карбюратор.

Она позволяет подавать топливо непосредственно в каждый цилиндр автомобиля и приводить его в движение. Что касается расположения, то изначально карбюратор устанавливался перед впускным коллектором и готовил качественную смесь.

С некоторым временем потребности современных водителей и конструкторов возросли в несколько раз. Из-за этого система не могла выдавать того желаемого результата, который хотели видеть все. Особенно это касается кораблестроения и самолетостроения. Дело в том, что в этих отраслях нужна огромная мощность и высокий КПД.

В результате этого конструкторы придумали совершенно новую систему, которая немного походила на дизельный двигатель, но имела стандартные свечи зажигания. Все это произошло в начале 40-х годов, именно в это время были сконструированы первые инжекторные двигатели.

Данный скачок позволил получить желаемый результат по мощности, но немного не подходил под экологическую безопасность. В результате, разработки пришлось на время прекратить до начала 70-х годов. Именно в это время американские конструкторы решили возродить подачу топлива непосредственно в цилиндры двигателя и сделать более усовершенствованную систему.

Устройство

Давление впрыска в инжекторного двигателяВ современных инжекторных двигателях топливо подается не самотеком, а при помощи небольшой системы, под названием форсунка.

Ее работа основана на считывании всевозможных датчиков, которые располагаются в двигателе. Благодаря этому топливовоздушная смесь дозируется небольшими порциями и подается именно в тот момент, когда это необходимо.

Что касается самого управления, то все держится на простом блоке управления, так называемом компьютере. Именно он и раздает небольшие команды каждой форсунке.

Инжекторная система имеет следующие компоненты:

  1. Топливная форсунка;
  2. Топливная рампа;
  3. Насос;
  4. Сам блок управления;
  5. И небольшая система датчиков.

Подробнее о каждом компоненте:

  • Топливная форсунка является основным компонентом, который и называют инжектором. Она позволяет своевременно подавать топливо и распылять его непосредственно в каждый цилиндр. В основе форсунки лежит простой корпус и электромагнитный клапан, который и осуществляет процесс открытия и закрытия форсунки. Что касается самого распыления, то оно происходит через специальное отверстие, управляемое клапаном.
  • Топливную рампу можно найти в любом современном инжекторном двигателе. Ее главное предназначение состоит в подводе топлива ко всем форсункам. Если говорить просто, то она соединяет все форсунки в единое целое.
  • Что касается топливного насоса, то он просто подает топливовоздушную смесь под давлением, сравнимую с давлением в несколько атмосфер. Без него бы топливо подавалось просто самотеком, как и в карбюраторном двигателе.
  • Мозгом системы является блок управления, который и отдает команды всем форсункам. По сути, это небольшой микроконтроллер, соединенный с большим количеством датчиков, форсунками, топливным насосом, системой зажигания, регулятором холостого хода и другими системами. Его главная задача состоит в сборе всей информации по состоянию двигателя и распределении топлива.
  • Датчики отвечают за измерение основных параметров силовой установки в реальном времени. В основном это расход воздуха, расположение коленвала, образование детонации в цилиндрах, температура, скорость транспортного средства и другое. Также можно встретить датчики, которые определяют включен ли кондиционер, ровная ли дорога и как располагается распределительный вал.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход.

    В это время происходит сжимание топлива и поджигание при помощи искры.

  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.

  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает.

Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

  1. Впуск;
  2. Сжатие;
  3. Сгорание;
  4. Выпуск.

Давление впрыска в инжекторного двигателяЧтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Режимы работы

Сейчас можно встретить восемь режимов работы силового агрегата:

  1. При холодном пуске топливная смесь очень сильно обедняется. Это случается из-за того, что топливо очень плохо смешивается с воздухом. В результате не происходит того испарения, которое нужно. Такой способ работы двигателя очень сильно вредит деталям. То есть большое количество топлива оседает на стенках цилиндра и выпускных труб;
  2. Если вы заводите авто при низкой температуре, то на начальном этапе требуется очень обогащенная смесь. Для этого нужно подавать большее количество топлива, пока температура в камере сгорания не повысится до нужного значения;
  3. После пуска идет процесс прогрева инжекторного двигателя. Вы знаете, что во время пуска в мороз смесь очень бедная, образуется некая топливная пленка в выпускной трубе. Она исчезает только после достижения очень высокой температуры. В связи с этим топливную смесь нужно очень сильно обогащать;
  4. При частичной нагрузке необходимо поддерживать определенный состав топливовоздушной смеси. Если двигатель инжекторный не оснащен нейтрализатором, то обогащенность должна быть в пределах 1,05 – 1,2;
  5. При полной нагрузке дроссельная заслонка полностью открыта. Поступает большое количество воздуха, что очень хорошо. В этом режиме достигается максимальная мощность и крутящий момент;
  6. Во время ускорения заслона то открывается, то закрывается. В результате этого смесь кратковременно обедняется и происходит ограничение подачи топлива. Для предотвращения такого явления обогащение должно быть меньше 1;
  7. В холостом режиме происходит замедление, автомобиль двигается по инерции. В этом случае подача топлива полностью перекрывается;
  8. Если происходит увеличение высоты, то плотность воздуха уменьшается. Из этого следует, что двигаться в горах очень сложно, топливная смесь будет очень обогащена. Это может привести к трудному пуску силового агрегата и увеличению расхода топлива.

Преимущества и недостатки

Инжектор получил огромную популярность в современном мире. Это обусловлено следующими плюсами:

  1. Режим работы меняется автоматически, без использования человеческого фактора;
  2. Полностью отсутствует необходимость в ручной настройке;
  3. Двигатель очень экономичный;
  4. Полностью соответствует всем экологическим нормам;
  5. Очень легко запускать в любую погоду, нет потери мощности.

Кончено, без недостатков никуда. О них тоже стоит рассказать:

  1. Довольно высокая стоимость и обслуживание;
  2. Многие детали непригодны к ремонту. То есть их придется полностью выкидывать и менять на новые;
  3. Производить ремонт и обслуживание в домашних условиях практически невозможно. Для этого требуется специальное оборудование и опыт;
  4. Двигатель очень зависим от напряжения сети.

Типы инжекторной системы

Сейчас можно встретить три типа:

  1. Одноточечный впрыск;
  2. Многоточечный впрыск;
  3. Непосредственный впрыск.

Первый является самым простым и очень распространённым. Он не очень сильно начинен электроникой, что приводит к меньшему эффекту. Большим недостатком такой системы является то, что некая часть топлива теряется во время впрыска. То есть топливная смесь подается через форсунку во впускной коллектор, где происходит распределение по цилиндрам.

Следом идет многоточечный впрыск, который позволяет подавать топливо индивидуально в каждый цилиндр. Благодаря этому у вас не будет возникать вопрос: нужно ли прогревать инжекторный двигатель.

Что касается самого распределения, то он мощнее и экономичнее. По многочисленным тестам можно увидеть, что мощность увеличивается на 7 процентов.

К основным преимуществам можно отнести автоматическую настройку подачи топлива и впрыскивание вблизи клапана.

Непосредственный впрыск используется во многих современных автомобилях. Его особенность состоит в том, что подача топлива происходит непосредственно в каждый цилиндр. Ни одной капли смеси не будет расходоваться впустую.

Если у вас возникает вопрос надо ли прогревать двигатель, то ответ очень простой. Это зависит от самого производителя и его рекомендаций. Некоторые рекомендуют прогревать силовой агрегат не очень долго, чтобы не навредить всем деталям.

Каждый должен сам ответить на вопрос, надо ли ему прогревать двигатель, изучив рекомендации к своему авто.

Давление впрыска в инжекторного двигателя Инжекторный автомобильный двигатель: принцип работы, плюсы и минусы Ссылка на основную публикацию Давление впрыска в инжекторного двигателя Давление впрыска в инжекторного двигателя

Инжекторная система — что это и как она работает

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену карбюратору. Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Давление впрыска в инжекторного двигателя

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике.

На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора.

В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора.

Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях.

В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

  • Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.
  • Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.
  • Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:
  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

  1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам.

В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом.

Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Давление впрыска в инжекторного двигателя

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа  инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Давление впрыска в инжекторного двигателя

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом.

Эта система по принципу работы очень схожа с дизельной.

Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Давление впрыска в инжекторного двигателя

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Давление впрыска в инжекторного двигателя

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей.  Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Давление впрыска в инжекторного двигателя

Устройство электромагнитной форсунки

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь.

При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи.

А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. Лямбда-зонд . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. Датчик положения дроссельной заслонки (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. Датчик положения коленчатого вала (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. Датчик детонации. Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Устройство системы питания бензинового инжекторного двигателя

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

  Ремень генератора — виды, признаки износа и замена

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Ремонт системы питания бензинового двигателя

Самые распространенные неисправности системы питания бензинового двигателя с карбюратором являются:

  • Прекращение поступления топлива в карбюратор;
  • Формирование слишком обедненной и обогащенной смеси;
  • Течь топлива;
  • Затруднительно запустить ДВС;
  • Перерасход топлива;
  • Запах бензина в салоне и снаружи авто;
  • Потеря мощности ДВС, нестабильная и неустойчивая его работа;
  • Увеличение токсичности выбросов в любых режимах работы.

Чтобы не допустить появление таких неполадок, важно знать, что ведет к этому, и каким образом качественно выполнять ремонт системы питания двигателя.

Диагностика форсунок на автомобиле ВАЗ:

Формирование бедной горючей смеси

Обедненная смесь имеет свои черты: мотор перегревается, временно теряет мощность, появляются «выстрелы» в карбюраторе.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

  Проверяем гидрокомпенсаторы на исправность своими руками

Устройство и принцип работы (на примере электронной системы распределенного впрыска)

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка.

Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки.

Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

https://www.youtube.com/watch?v=-ZZWBRzBBGM

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленчатого вала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик.

При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно.

Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах.

Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива.

Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечисленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина.

Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение.

При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Как работает

Для нормальной работы двигателя необходимо обеспечить поступление в камеру сгорания двигателя топливовоздушной смеси оптимального состава. Смесь приготавливается во впускной трубе при смешивании воздуха и топлива.

Контроллер подает на форсунку управляющий импульс, который открывает нормально закрытый клапан форсунки, и топливо под давлением распыляется во впускную трубу перед клапаном.

Поскольку перепад давления топлива поддерживается постоянным, количество подаваемого топлива пропорционально времени, в течение которого форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов.

Увеличение длительности импульса впрыска приводит к увеличению количества подаваемого топлива — обогащению смеси. Уменьшение длительности импульса впрыска приводит к уменьшению количества подаваемого топлива, то есть к обеднению.

Наряду с точной дозировкой впрыскиваемой топливной массы имеет важное значение и момент впрыскивания. Поэтому количество форсунок соответствует количеству цилиндров двигателя.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу.

Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха.

Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Инжекторный двигатель: принцип работы, плюсы и минусы

Инжекторный двигатель – агрегат, укомплектованный системой электронного впрыска топлива, управляемый электронным блоком управления. Массовый переход на инжектор к концу 80-х годов вполне оправдан: впрысковые моторы более экологичны, экономичны, по ходу работы состав и количество смеси корректируется согласно нагрузкам двигателя ЭБУ.

Главные отличия карбюратора от электронного впрыска

Электронный инжекторный двигатель кардинально различается от карбюраторного. В карбюраторном моторе смесеобразование внешнее (готовится в карбюраторе), а инжекторные форсунки впрыскивают топливо, либо в коллектор перед впускным клапаном, либо в цилиндр непосредственно.

Карбюратор – на 80% механическое устройство, если не считать экономайзера принудительного холостого хода (когда двигатель отключается при отпущенной педали газа на ходу), и электронного подсоса (для запуска и прогрева двигателя, смесь подается обогащенной).

Инжектор является дозатором, который способен в разное время и в течение разного времени впрыскивать топливо.

  Настройка и регулировка инжектора

Если взять два одинаковых двигателя, на одном из которых топливная система будет инжекторная, а на втором карбюраторная, у второго мощность будет выше на 15-20%.

Принцип работы инжекторного двигателя

В отличие от карбюратора, в камеру сгорания инжекторного двигателя топливо подается под большим напором через отверстия специальных форсунок.

Смешение горючего с кислородом происходит не заранее во внешнем механизме (карбюраторе), а непосредственно в полости рабочего цилиндра.

Благодаря принципиальным различиям в системе впрыска, инжекторный мотор в состоянии вырабатывать мощность на 15% больше, чем карбюратор.

При такой эффективности дозированной топливоподачи сразу становится понятно, какой двигатель лучше, карбюраторный или инжекторный. Замечено, что транспортные средства, оборудованные инжектором, намного экономичнее карбюраторных машин, расходуют намного меньше бензина.

Описание процесса работы инжектора:

  1. В момент включения двигателя внутреннего сгорания в работу вступает бензонасос.
  2. Топливо под давлением подается на форсунки.
  3. Сюда поступают сигналы с ЭБУ, под воздействием которых отверстия открываются в определенное время на заданную величину.

Разновидности инжектора

На сегодняшний день используется электронный распределенный непосредственный впрыск. Переходным этапом инжектирования был моновпрыск (центральный) с одной форсункой. Моновпрыск использовался очень мало, так как недостатков было больше, чем достоинств. Скоро его заменил распределенный впрыск.

Распределенный электронный впрыск топлива предполагает наличие форсунок, по одной на каждый цилиндр. Воздух в цилиндры попадает через впускной коллектор и дозируется дроссельной заслонкой.

Непосредственный впрыск напоминает дизельную топливную систему, так как форсунки вмонтированы прямо в цилиндры, от чего и происходит название.

Инжекторные двигатели

Вместо недавно повсеместно распространенных карбюраторных двигателей сейчас в основном используются инжекторные или впрысковые двигатели. Принцип их работы относительно прост и чрезвычайно экономичен. Однако, чтобы оценить преимущество инжектора, нужно сначала разобраться, почему они пришли на смену карбюраторам.

Карбюратор служит для подачи топлива во впускной коллектор, где оно уже смешивается с воздухом, а оттуда распределяется в камеры сгорания поршней.

На подачу и смешивание топлива с воздухом израсходуются силы двигателя – до десяти процентов.

Бензин всасывается в коллектор благодаря разнице в давлении в атмосфере и коллекторе, а чтобы поддерживать нужный уровень давления, как раз и расходуются ресурсы двигателя.

Кроме этого у карбюратора есть и масса других недостатков, например, когда через карбюратор проходит слишком много топлива, он просто физически не успевает направить его через узкую горловину в коллектор, в результате чего карбюратор начинает коптить. Если же топливо ниже определенного уровня, то двигатель попросту не тянет и глохнет – знакомая многим ситуация.

Принцип работы инжектора

  Оппозитный двухтактный двигатель своими руками

Инжектор, в принципе, исполняет в двигателе ту же работу, что и карбюратор – подает топливо в камеры сгорания поршней. Однако происходит это не из-за всасывания бензина в коллектор, а методом впрыска топлива через форсунки непосредственно в камеры сгорания или в коллектор, и здесь же происходит смешивание топлива с воздухом.

Мощность инжекторных двигателей в среднем на 10 процентов выше, чем карбюраторных.

Инжекторы делятся на два основных вида:

  • моновпрыск – топливо подается через форсунки в коллекторе, а затем распределяется непосредственно в камеры сгорания;
  • распределенный впрыск – в головке цилиндров имеется форсунка для каждого поршня и смесь топлива с воздухом происходит в камере сгорания.

Инжекторные двигатели с распределенным впрыском являются самыми экономичными и мощными. Подача бензина происходит в момент открытия впускного клапана.

Преимущества инжектора

Система впрыска незамедлительно реагирует на любые изменения нагрузки на двигатель, как только увеличиваются обороты, впрыск производится чаще.

Автомобили с впрысковой системой легче заводятся, увеличивается динамический момент двигателя. Инжектор меньше реагирует на погодные условия, ему не требуется длительное прогревание при минусовых температурах воздуха.

  • Инжекторы более “дружелюбны” к экологии, уровень выбросов вредных веществ на 50-70 процентов ниже, чем у карбюратора.
  • Также они более экономны, поскольку топлива расходуется ровно столько, сколько нужно для бесперебойной работы двигателя в данный момент.
  • Недостатки впрысковых систем
  • К недостаткам можно отнести тот факт, что для нормальной работы двигателя требуется слаженная работа нескольких электронных датчиков, которые контролируют разные параметры и передают их на главный процессор бортового компьютера.
  • Высокие требования к чистоте топлива – узкие горлышки форсунок очень быстро будут забиваться, если пользоваться некачественным бензином.
  • Ремонт обходится очень дорого, а некоторые элементы вообще не подлежат восстановлению.
  • Как видим, ни одна система не лишена недостатков, однако преимуществ у инжектора значительно больше и именно из-за этого инжекторные двигатели пришли на замену карбюраторным.
  • Очень наглядное видео, в 3D, о принципе работы инжекоторного двигателя.
  • В данном видео вы узнаете о принципе работы системы питания инжекторного двигателя.
  • (2
Ссылка на основную публикацию
Adblock
detector