Влияние напряжения на работу синхронных двигателей

Дмитрий Левкин

Конструкция синхронного электродвигателя с обмоткой возбуждения

Синхронный электродвигатель с обмоткой возбуждения, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть. Статор обычно имеет стандартную трехфазную обмотку, а ротор выполнен с обмоткой возбуждения. Обмотка возбуждения соединена с контактными кольцами к которым через щетки подходит питание.

Влияние напряжения на работу синхронных двигателей

Синхронный электродвигатель с обмоткой возбуждения (щетки не показаны)

Принцип работы

Постоянная скорость вращения синхронного электродвигателя достигается за счет взаимодействия между постоянным и вращающимся магнитным полем. Ротор синхронного электродвигателя создает постоянное магнитное поле, а статор – вращающееся магнитное поле.

Работа синхронного электродвигателя основана на взаимодействии вращающегося магнитного поля статора и постоянного магнитного поля ротора

Статор: вращающееся магнитное поле

На обмотки катушек статора подается трехфазное переменное напряжение. В результате создается вращающееся магнитное поле, которое вращается со скоростью пропорциональной частоте питающего напряжения. Подробнее о том, как посредством трехфазного напряжения питания образуется вращающееся магнитное поле можно прочитать в статье «Трехфазный асинхронный электродвигатель».

Влияние напряжения на работу синхронных двигателей

Взаимодействие между вращающимся (у статора) и постоянным (у ротора) магнитными полями

Ротор: постоянное магнитное поле

Обмотка ротора возбуждается источником постоянного тока через контактные кольца. Магнитное поле создаваемое вокруг ротора возбуждаемое постоянным током показано ниже.

Очевидно, что ротор ведет себя как постоянный магнит, так как имеет такое же магнитное поле (в качестве альтернативы можно представить, что ротор сделан из постоянных магнитов). Рассмотрим взаимодействие ротора и вращающегося магнитного поля.

Предположим вы придали ротору начальное вращение в том же направлении как у вращающегося магнитного поля. Противоположные полюса вращающегося магнитного поля и ротора будут притягиваться друг к другу и они будут сцепляться с помощью магнитных сил.

Это значит, что ротор будет вращаться с той же скоростью, что и вращающееся магнитное поле, то есть ротор будет вращаться с синхронной скоростью.

Влияние напряжения на работу синхронных двигателей

Магнитные поля ротора и статора сцепленные друг с другом

Синхронная скорость

Скорость с которой вращается магнитное поле может быть вычислена по следующему уравнению:

  • где Ns – частота вращения магнитного поля, об/мин,
  • f – частота тока статора, Гц,
  • p – количество пар полюсов.

Это значит, что скорость синхронного электродвигателя может очень точно контролироваться изменением частоты питающего тока. Таким образом эти электродвигатели подходят для высокоточных приложений.

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении.

Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы.

В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой.

При запуске электродвигателя катушки ротора не возбуждаются.

Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются асинхронные двигатели.

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью.

При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю.

Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Выход из синхронизма

Синхронные электродвигатели имеют постоянную скорость независящую от нагрузки (при условии что нагрузка не превышает макимально допустимую). Если момент нагрузки больше, чем момент создаваемый самим электродвигателем, то он выйдет из синхронизма и остановиться. Низкое напряжение питания и низкое напряжение возбуждения также могут быть причинами выхода двигателя из синхронизма.

Синхронный компенсатор

Синхронные электродвигатели могут также использоваться для улучшения коэффициента мощности системы. Когда единственной целью использования синхронных электродвигателей является улучшение коэффициента мощности их называют синхронными компенсаторами. В таком случае вал электродвигателя не соединяется с механической нагрузкой и вращается свободно.

Синхронные двигатели с постоянными магнитами на роторе: управление (синус и/или трапеция)

В продолжение темы модельно ориетированного проектирования, публикую очередную статью Калачева Юрия Николаевича, автора книгиМоделирование в электроприводе. Инструкция по пониманию. Данный текст еще готовится к публикации в специализированных изданиях, но читатели хабра увидят его первые.

В зарубежной литературе можно встретить два термина, связанных с этими двигателями:

  1. PMSM (Permanent Magnet Synchronous Motor), что на языке Пушкина означает: синхронный двигатель c постоянными магнитами (СДПМ), и это понятно.

  2. BLDC (Brush Less Direct Current), что переводится с языка Шекспира, как Бесколлекторный (бесщеточный) Двигатель Постоянного Тока (БДПТ), и это непонятно. Причем здесь постоянный ток?

  • С этими названиями и у нас, и за рубежом существует немалая путаница.
  • Например, термин PMSM (СДПМ) может применяться для обозначения двигателя с постоянными магнитами на роторе, независимо от формы его ЭДС, но так же часто его применяют, подразумевая исключительно синусоидальную форму ЭДС двигателя.
  • Термин BLDC (БДПТ) может применяться для обозначения двигателя с постоянными магнитами на роторе и трапецеидальной ЭДС, а может вообще обозначать не двигатель, а некий мехатронный узел, включающий в себя:
  • двигатель с постоянными магнитами и трапецеидальной ЭДС
  • датчик положения ротора
  • управляемый по сигналам этого датчика полупроводниковый коммутатор.
  1. Собственно этот мехатронный узел, который может, как и двигатель постоянного тока, управляться постоянным напряжением и породил сам термин BLDC (БДПТ).
  2. Ещё по отношению к синхронным двигателям с постоянными магнитами на роторе в отечественной литературе, можно встретить название «вентильный двигатель».
  3. Попытки автора разобраться с этим термином быстро зашли в тупик, так как в различных источниках обнаружились явные противоречия.

Например, в книге Г.Б. Онищенко «Электрические двигатели» на стр. 47 «вентильным» называется двигатель соответствующий термину BLDC (БДПТ), что предполагает трапецеидальную ЭДС, и это понимаемо.

Но двигатели типа 5ДВМ сам производитель (ЧЭАЗ) называет «вентильными», хотя при этом утверждает, что они имеют синусоидальную ЭДС.

А вот википедия: «Вентильный двигатель следует отличать от бесколлекторного двигателя постоянного тока (БДПТ), который имеет трапецеидальное распределение магнитного поля в зазоре…».

Ну, … приехали …

  • Какой термин, какой форме ЭДС соответствует – непонятно.
  • А между тем, именно эта форма определяет выбор структуры системы управления двигателем.
  • Как человек занимающийся управлением этими двигателями хочу предложить:
  • во избежание путаницы забыть термин «вентильный двигатель»
  • термином БДПТ обозначать не двигатель, а исключительно описанный выше мехатронный узел (аналог двигателя постоянного тока)
    1. делить синхронные двигатели с постоянными магнитами на роторе (СДПМ) по типу ЭДС на две группы:
    2. 1) с синусоидальной ЭДС (далее, для краткости, — СДПМс)
    3. 2) с трапецеидальной ЭДС (далее, для краткости, — СДПМт)

Управление

При управлении двигателями с синусоидальной ЭДС используется векторное регулирование (подробно описано в книжке по ссылке). С точки зрения возможностей и качества управления это наилучший вариант.

Однако и двигатели с трапецеидальной ЭДС в силу более простой конструкции статорных обмоток и возможности более простого управления применяются довольно часто.

Конструкция двигателей

Форма ЭДС определяется конструкцией двигателя. 

Ротор синхронных двигателей представляет собой магнит с различным количеством пар полюсов.

На Рис 1. показаны возможные конструкции статорных обмоток. Обычно синусоидальной ЭДС соответствует «распределенная» намотка, а трапецеидальной «сосредоточенная».

Влияние напряжения на работу синхронных двигателейРисунок 1. Конструкции статорных обмоток

Статорная обмотка двигателя с трапецеидальной ЭДС проще и технологичнее, за счёт этого цена такого двигателя несколько ниже.

Далее остановимся более подробно на двигателе с трапецеидальной ЭДС (СДПМт)

Двигатель с одной парой полюсов будет выглядеть в разрезе так, как показано на Рис.2.

Влияние напряжения на работу синхронных двигателейРисунок 2. Схема двигател с одной парой полюсов я в разрезе

На статоре СДПМт намотаны три обмотки (А, В, С), сдвинутые в пространстве на 120°. Каждая обмотка состоит из двух секций, включённых встречно.

 Таким образом, при протекании тока в обмотке она создаёт внутри двигателя два полюса (положительный и отрицательный), к которым и притягивается магнитный ротор.

 Поочередное изменение токов в обмотках переключает полюса обмоток и заставляет ротор двигаться вслед за полем. На этом и основан принцип работы двигателя.

В дальнейшем будем считать нулевым то угловое положение ротора при котором вектор потока ротора совпадает по направлению с осью фазы А (осью обмотки А).

Уравнения равновесия статорных обмоток СДПМт в системе АВС

Уравнения равновесия статорных обмоток двигателя при его включении в «звезду» в неподвижных фазных координатах АВС имеют вид (1).

Здесь:

Поток в обмотке каждой фазы формируется из следующих составляющих:

  • поток, наводимый собственным током фазы
  • поток, наводимый магнитными полями других фазных обмоток 
  • поток, наводимый в обмотке магнитами ротора.

Проиллюстрируем это системой (2):

  • Где:- взаимные индуктивности обмоток- потокосцепления, наводимые в обмотках магнитом ротора.
  • В общем случае все индуктивности системы (2) могут являться переменными функциями угла поворота поля .
  • В частном случае для неявнополюсного двигателя (при цилиндрическом роторе) индуктивности и взаимные индуктивности обмоток не зависят от угла.
  • Обозначив- индуктивность фазной обмотки,
  • — взаимная индуктивность двух фазных обмоток,и подставив выражения (2) в систему (1), получим выражение (3):
  • Заметив, что производные по времени от потокосцеплений магнитов ротора
  • — есть не что иное, как наводимая магнитами
  • ротора в этих обмотках ЭДС, систему (3) можно переписать в виде (4).
  • Теперь введем понятие единичной функции формы ЭДС.
Читайте также:  Двигатель fd35 технические характеристики

Единичная функция формы ЭДС — это функция от угла поля (), имеющая единичную амплитуду и повторяющая по форме ЭДС. Для фаз А,В,С обозначим эти функции: .

Используя единичные функции формы, мгновенные ЭДС в фазах можно представить выражением (5):

    1. Где:
    2. — амплитуда потокосцепления ротора и фазной обмотки
    3. — скорость вращения поля 
    4. — скорость вращения ротора
    5. — число пар полюсов двигателя.

Зависимости единичных функций формы ЭДС обмоток СДПМт от угла поворота поля представлены На Рис.3.

Рис. 3. Единичные функции форм ЭДС

Вывод формулы для расчета электромагнитного момента СДПМт

  • Момент, создаваемый двигателем, является суммой моментов, создаваемых его обмотками.
  • Посмотрим на уравнение равновесия обмотки А из системы (4).
  • Умножив обе его части на ток обмотки, получим уравнение для мгновенной электрической мощности обмотки:
  • Рассмотрим составляющие этой мощности:
  • — реактивная мощность обмотки
  • — активная мощность, рассеивающаясяв обмотке
  • — мощность, создающая электромагнитный момент.

Если пренебречь потерями при переходе электрической мощности в механическую, то можно записать:

    1. Где:
    2. — электромагнитный момент двигателя
    3. — угловая скорость вращения ротора.

Подставив в формулу (6) значения ЭДС из соотношений (5), получим формулу вычисления электромагнитного момента ротора (7).

Коммутация обмоток СДПМт

В соответствии с формулой (7) момент СДПМт пропорционален сумме произведений фазных токов на функции формы соответствующих ЭДС.

Максимальное значение ЭДС обмотки соответствует плоским участкам трапеции ЭДС. Если бы нам удалось на этих участках угловой траектории сформировать в обмотках токи некоторой постоянной амплитуды, например, совпадающие по знаку со знаком ЭДС, то это позволило бы сформировать при этих токах максимальный постоянный положительный момент.

Для примера рассмотрим на Рис.3 участок угловой траектории от π/6 до π/2. На этом участке ЭДС в фазе А имеет максимально отрицательное значение, а в фазе В максимально положительное.

Следовательно, для получения положительного момента на этом участке угловой траектории надо обеспечить в фазе А отрицательное, а в фазе В положительное значение тока.

 Для этого фазу А можно подключить на отрицательный, а фазу В на положительный полюса внешнего источника постоянного напряжения (Udc). При этом фаза С не используется (отключена от источника Udc).

Величина тока, протекающего через обмотки, будет в свою очередь определяться прикладываемым к обмоткам напряжением, величиной ЭДС и параметрами обмоток.

Если рассуждать таким образом, то можно составить таблицу коммутаций обмоток, обеспечивающих в зависимости от положения ротора момент нужного знака (Табл. 1).

Таблица1. Закон коммутации

Обмотки трёхфазного двигателя можно коммутировать на внешний источник напряжения с помощью трехфазного мостового инвертора. Для этого состояние инвертора надо поставить в зависимость от положения ротора.

 Обычно это делается с помощью датчика положения ротора (ДПР). Этот датчик имеет три канала. Каждый канал выдает за один оборот двигателя импульс, соответствующий половине периода вращения, при этом импульсы в каналах сдвинуты на 120°.

Логическая обработка сигналов ДПР позволяет определить — в каком из шести секторов в данный момент находится ротор.

Работа ДПР поясняется Табл. 2.

Таблица 2. Работа ДПР (определение сектора)

Возможная структура системы управления моментом СДПМт

Алгоритм, описанный в Табл.1, предполагает протекание одного и того же тока в двух фазах двигателя при единичном значении функции формы ЭДС в обмотках фаз. Поэтому выражение (7) можно переписать в виде (8).

Где: — значение тока в фазах.

То есть значение момента пропорционально величине тока в обмотках двигателя.

Вытекающая из формулы (8) структура системы управления моментом в приводе с СДПМт изображена на Рис.4.

Рисунок 4. Система управления моментом БДПТ

Данная структура позволяет получить нужный момент, формируя в обмотках двигателя ток необходимой амплитуды, при сохранении алгоритма коммутации (Табл.1).

Эта задача решается с помощью создания на базе трёхфазного мостового инвертора контура тока с ШИМ.

Регулятор тока (ПИ-рег.) формирует сигнал задания напряжения обмоток (U), которое затем реализуется инвертором с ШИМ в соответствии с алгоритмом коммутации (Табл.1).

В качестве сигнала обратной связи в контуре можно использовать трёхфазно-выпрямленные сигналы датчиков тока фаз или сигнал датчика тока в звене постоянного тока инвертора ().

На основе рассмотренного канала управления моментом можно строить внешние контуры управления скоростью и положением.

Однако

Если бы токи в обмотках спадали до нуля и нарастали до нужного уровня мгновенно, то момент двигателя, определяемый их величиной, в установившемся режиме был бы постоянным.

 В действительности же реальные переходные процессы при коммутации обмоток приводят к пульсациям момента.

 В зависимости от параметров обмоток, а также соотношения величин текущей ЭДС и напряжения звена постоянного тока эти пульсации могут быть различны по длительности, амплитуде и знаку.

Кроме этих коммутационных пульсаций в рассматриваемой системе также будут иметь место пульсации момента на частоте ШИМ.

Ниже приведен пример работы модели системы регулирования скорости. Данная модель построена в среде SimInTech на элементах специализированного тулбокса «Электропривод». Среда позволяет получить максимальное приближение моделируемых процессов к реальности с учетом эффектов временной и уровневой дискретизации.

Часть модели, а именно — модель цифровой системы управления скоростью приведена ниже, на Рис.5. Регулятор скорости системы (Рег.W) выдает сигнал момента, который отрабатывается структурой, построенной в соответствии с Рис.4.

Рисунок 5. Модель цифровой системы управления

Для управления был выбран двигатель со следующими параметрами:

    • Rs = 2.875 Ом — сопротивление обмотки фазы;
    • Ls = 8.5e-3 Гн – индуктивность фазы;
    • F = 0.175 Вб – потокосцепление ротора;
    • Zp = 4 — число пар полюсов;

    Jr = 0.06 кг·м2 — момент инерции ротора.

  1. Напряжение в звене постоянного тока привода было принято равным 100В.
  2. В контуре тока электропривода использовалась ШИМ с частотой 5кГц.
  3. В процессе регулирования происходило ступенчатое увеличение частоты при постоянном моменте сопротивления на валу двигателя (10 Нм).

Графики, полученные в процессе работы модели, приведены на Рис.6.

Рисунок 6. Моделирование работы двигателя

  • На графике момента видны существенные пульсации.
  • Отметим, что в основном они связаны именно с переходными процессами при коммутации обмоток и имеют соответственно частоту, ушестеренную по отношению к заданной.
  • Пульсации, связанные с ШИМ, в данном случае, невелики.
  • Заметим, что коммутационные пульсации существенно возрастают при увеличении момента, что связано с увеличением тока.
  • Несколько спасает то, что их влияние на скорость снижает инерция.

А можно ли векторно управлять СДПМт?

Если очень хочется — то можно.Однако и здесь не без особенностей.

Математика и структура стандартной векторной системы управления исходит из синусоидальности поля в зазоре. При трапецеидальной ЭДС это условие нарушается, правда не очень сильно (трапеция это же почти синус).

§ 5.22. ВЛИЯНИЕ ТОКА ВОЗБУЖДЕНИЯ НА РАБОТУ СИНХРОННОГО ДВИГАТЕЛЯ. СИНХРОННЫЙ КОМПЕНСАТОР

Характерной особенностью синхронного двигателя является его способность работать с любым (включая и Это осуществляется регулированием тока возбуждения.

Векторная диаграмма двигателя в недовозбужденном режиме приведена на рисунке 5-36 (векторы и углы:

Будем изменять ток возбуждения, а следовательно, и ЭДС. Пусть нагрузка на валу двигателя постоянна. Тогда и потребляемая из сети активная мощность постоянна. Так как напряжение сети U постоянно, то активная составляющая потребляемого тока также постоянна. Это означает, что при изменениях потребляемого тока его проекция на направление вектора U будет также постоянной (конец вектора тока 1 будет ограничен прямой АВ). При изменениях тока возбуждения вектор ЭДС 8 будет изменяться так, что его конец будет скользить вдоль прямой CD, параллельной вектору напряжения

При увеличении тока возбуждения ЭДС растет и при некотором значении угла наступает равенство и вектор падения напряжения на индуктивном сопротивлении становится перпендикулярным вектору напряжения U, а ток совпадает по фазе с напряжением U, т. е. Двигатель, имея ту же нагрузку на валу, что и в предыдущем случае, работает теперь с .

Дальнейшее увеличение тока возбуждения (режим перевозбуждения) приводит к дальнейшему росту ЭДС и уменьшению

угла , при этом изменяется знак угла и ток опережает по фазе напряжение U. Двигатель потребляет активно-емкостную мощность.

Таким образом, изменение тока возбуждения синхронного двигателя порождает появление реактивных составляющих потребляемой мощности.

Это просто объясняется действием реакции якоря: в режиме недовозбуждения возникает индуктивная составляющая тока якоря, подмагничивающая двигатель, а в режиме перевозбуждения возникающая емкостная составляющая тока якоря, наоборот, размагничивает двигатель, при этом при любом токе возбуждения результирующая ЭДС уравновешивает напряжение сети.

На практике синхронные двигатели работают, как правило, в перевозбужденном режиме с потреблением из сети активной и емкостной составляющих тока. Это дает возможность улучшать в системах, где работают асинхронные двигатели.

Широкое применение получили синхронные двигатели облегченной конструкции, работающие без механической нагрузки в перевозбужденном режиме.

Такие двигатели потребляют практически чисто емкостный ток и используются специально для улучшения (вместо дорогостоящих статических конденсаторов). Их называют синхронными компенсаторами.

Регулирование напряжения при помощи синхронного двигателя и конденсатора | Режимщик

Синхронные двигатели

К синхронным машинам относятся генераторы электрических станций, синхронные двигатели, устанавливаемые на промышленных предприятиях, и специальные синхронные  двигатели, работающие в режиме холостого хода и используемые как источники или потребители реактивной мощности (синхронные компенсаторы).

Способность синхронных машин к регулированию напряжения основана главным образом  на том, что плавное изменение режима возбуждения синхронной машины сопровождается изменением ее реактивной мощности и соответствующим перераспределением потоков реактивной мощности в сети.

Читайте также:  Двигатель 4g93 заводится и сразу глохнет

Обычно в сетях предприятий в величине протекающего тока присутствует значительная доля индуктивного (реактивного) тока. Чем больше его доля, тем ниже коэффициент мощности, меньше пропускная способность питающих линий, больше потери напряжения в сети.

Использование в таких сетях в близи от потребителя синхронных двигателей или компенсаторов, работающих в режиме генерации реактивного тока (мощности), освобождает сетьот перетока реактивной мощности и может существенно улучшить режим напряжения у потребителя и повысить экономичность системы электроснабжения.

Аналогичное действие могут  оказать и батареи статических конденсаторов, оборудованных автоматическим регулятором мощности типа АРКОН.

Рассмотрим некоторые детали вопроса регулирования напряжения синхронными двигателями и конденсаторными батареями регулируемой мощности. Отечественная промышленность выпускает синхронные двигатели различных типов и мощности.

Наиболее распространенной серией двигателей на напряжение 380-660 В являются двигатели сери СД и на напряжение 3-10 кВ серии СДН мощностью от 320 до 10000 кВт. двигатели рассчитаны на работу при коэффициенте мощности 0,9 в опережающем режиме.

Возбуждение двигателей производится от собственных машинных возбудителей, расположенных на одном валу с двигателем. Машина допускает ручное или автоматическое регулирование возбуждения — воздействием на шунтовой реостат.

Перевозбуждая ротор, можно еще больше снизить коэффициент мощности в опережающем режиме, увеличивая выдаваемую мощность в сеть, однако при этом должна быть снижена активная мощность. Характеристики двигателей показывают, что незначительное — на 10 % увеличение реактивной мощности снижает использование кажущейся мощности на 28 %, а активной — на 63 %.

При работе синхронного двигателя в режиме перевозбуждения реактивная мощность его создает отрицательную величину потери напряжения в питающей сети.

Эффект от такого режима тем больший, чем больше величина реактивного сопротивления внешней сети.

Способность синхронных двигателей регулировать напряжение основана на перераспределении или ограничении участка, на котором происходит периодическое перемещение реактивной мощности между приемником электрической энергии и синхронным двигателем так, что вся оставшаяся часть сети частично или полностью освобождается от реактивной мощности. В том случае, если синхронный двигатель устанавливается для целей регулирования напряжения, возможна его работа не только в режиме перевозбуждения, но и в режиме недовозбуждения. Работа в указанных режимах должна быть обоснована технико-экономическим расчетом. Недовозбужденный синхронный двигатель является своеобразным поглотителем избыточной реактивной мощности. При регулировании напряжения в энергосистеме существенное значение имеют режимы работы генераторов электрических станций. На электрических станциях, работающих в режиме покрытия пиковой  нагрузки энергосистемы, работа всех агрегатов необходима только в часы максимальной нагрузки. В остальное время часть генераторов может быть остановлена или переведена в режим синхронного компенсатора (СК). Синхронные генераторы в режиме СК могут работать как без отсоединения генератора от турбины при закрытии доступа пара в турбину, так и при полном отсоединении турбины. Перевод гидроагрегатов в компенсаторный режим широко распространен и производится сравнительно быстро и просто. перевод генераторов в режим СК обусловлен тем, что расход энергии, потребляемой из сети генератором, меньше расхода при вращении генератора турбиной на холостом ходу.

Конденсаторы регулируемой мощности

Между статическими и синхронными двигателями как средствами компенсации реактивной мощности и регулирования напряжения и коэффициента мощности много общего.

Батарея конденсаторов поперечного (параллельного) включения в сеть по схеме звезда или треугольник является генератором реактивной мощности, которая при установке батареи вблизи приемника полностью или частично освобождает внешнюю сеть от перетоков реактивной мощности, улучшая на этих участках коэффициент мощности, снижая потери активной мощности и увеличивая этим напряжение во всех звеньях сети. Простота обслуживания, малая величина потерь энергии в конденсаторах, высокая надежность конструкции и общее развитие конденсаторостроения в основных промышленно развитых странах привели к тому, что для целей регулирования напряжения однозначно предпочтение отдается конденсаторам при одновременном сокращении применения синхронных компенсаторов

Регулирования активной и реактивной мощности синхронного генератора при подключении к сети

DOI: 10.32743/UniTech.2021.82.1-3.21-25

АННОТАЦИЯ

Регулирование активной и реактивной мощности генераторов при подключении к сети всегда было важным вопросом исследований электростанций и электрических сетей для эффективного использования энергии и стабильной работы двигателей.

В повседневной жизни потребление электроэнергии в жилых домах постоянно меняется (больше ночью и меньше днем; больше летом и зимой, меньше весной и осенью), поэтому для рационального использования ресурсов и улучшения экономики необходимы мониторинг и регулирование активной мощности в реальном времени.

В последнее время большинство приборов, подключенных к сети, являются индуктивными. Поэтому система питания должна загружать много реактивной мощности помимо активной.

Согласно статистике, реактивная мощность, потребляемая промышленными предприятиями, необходимая асинхронному двигателю в энергосистеме, составляет 60–65 %, 20–25 % силовых трансформаторов и 10 % приходятся на воздушный электрические сети и другого оборудования [2].

Реактивная мощность, поставляемая энергосистемой, распределяется между всеми генераторами, что вызывает проблему того, сколько должен выдерживать каждый генератор и как регулировать реактивную мощность генераторов. В этой статье подробно анализируются методы регулирования активной и реактивной мощности, диапазон регулирования, угловые характеристики мощности и электромагнитное соотношение активной и реактивной мощности.

ABSTRACT

The regulation of active and reactive power of generators when connected to the grid has always been an important issue in the research of power plants and electrical networks for efficient use of energy and stable operation of motors.

In everyday life, electricity consumption in residential buildings is constantly changing (more at night and less during the day; more in summer and winter, less in spring and autumn), therefore, real-time monitoring and regulation of active power is necessary for rational use of resources and improving the economy.

Most of the loads connected to the mains are inductive lately. Therefore, the power supply system must load a lot of reactive power in addition to active power.

According to statistics, the reactive power consumed by industrial enterprises required for an induction motor in the power system is 60–65 %, 20–25 % of power transformers and 10 % for overhead electrical networks and other equipment.

The reactive power supplied by the power system is shared among all generators, which raises the problem of how much each generator has to handle and how to regulate the reactive power of the generators. This article analyzes in detail the methods for regulating active and reactive power, the control range, the angular characteristics of power and the electromagnetic ratio of active and reactive power.

Ключевые слова: угол мощности, ток возбуждения, активное регулирование, регулирование реактивной мощности, статическая устойчивость.

Keywords: power angle, excitation current, active regulation, reactive power regulation, static stability.

1. Введение. В этой статье обсуждается, как отрегулировать активную и реактивную мощность после параллельного подключения генератора в основном для бесконечной электросети. Это означает, что изменение режима работы подключаемого генератора практически не может повлиять на изменение напряжения  или частоты  сети, где они остаются неизменными, т.е.  = const и  = const. Внутренний процесс анализируется с помощью векторной диаграммы или угла мощности при регулировке. Регулировка активной мощности должна изменить входную мощность первичного двигателя для изменения выходной мощности генератора в соответствии с характеристикой угла мощности. Если изменяется только ток возбуждения генератора, можно регулировать только реактивную мощность генератора.

2. При перевозбуждении выдается индуктивная реактивная мощность, а реакцией якоря является размагничивание; при слабом возбуждении генератор  производит емкостную реактивную мощность и реакция якоря может усилиться (также может размагничиваться). Обычный генератор возбуждения выдает только активную мощность с коэффициентом мощности, показанным на рис. 1 [2; 8; 6; 7].

2. Регулирование реактивной мощности синхронного генератора и анализ его работы. Предпосылка анализа заключается в том, что в качестве примера берем двигатель со скрытым полюсом. Эффектом насыщения и сопротивлением якоря пренебрегаем. Тогда сеть рассматривается как бесконечная, напряжение – неизменным, а частота – нормальной.

2.1. Выход без нагрузки на стабильную активную мощность. Когда генератор не выдает активную мощность, потребляемую первичным двигателем, просто компенсируются различные потери и не выводятся электромагнитные потери (без учета потерь в меди статора), поэтому угол мощности δ = 0°, электромагнитная мощность  = 0, как показано на рис. 1. В это время, хотя электродвижущая сила поля , напряжение сети U могут присутствовать и есть токовый выход, это реактивный ток. Когда входная мощность  первичного двигателя увеличивается, входной крутящий момент увеличивается и  ( – крутящий момент без нагрузки). В это время остаточный крутящий момент () действует на вал двигателя, так что ускорение ротора, главное магнитное поле ротора () и прямая ось d опережают эквивалентное статору синтетическое магнитное поле (). Поскольку магнитное поле ограничено частотой сети, скорость вращения остается синхронной, а соответственно, и электродвижущая фаза. Величина  опережает вектор напряжения на клеммах генератора  на фазовый угол, поэтому δ > 0°,  > 0, генератор выдает активный ток наружу, а электромагнитный момент  при этом появляется соответствующий к электромагнитному моменту  Когда δ увеличивается так, что соответствующий электромагнитный крутящий момент в точности равен остаточному крутящему моменту (), ротор возвращается к синхронной скорости, и генератор работает стабильно под углом δ, как показано на рисунке 1 (B) и 1 (С) [2; 6].

  • В это время выходная активная мощность генератора равна:
  • .                                                               (1)
  • Если это явнополюсный синхронный генератор, его угловая характеристика мощности равна:
  • .                                          (2)
  • Также можно видеть, что угол мощности – это угол между осью магнитного полюса ротора и осью магнитного полюса воздушного зазора в пространстве и угол между электродвижущей силой возбуждения  и напряжением U во времени [1–8].
  • Рисунок 1. Параллельно с бесконечной электросетью синхронный генератор вырабатывает активную мощность от холостого хода до стабильной выходной мощности
Читайте также:  Гидроподушка двигателя что это

2.2. Регулировка активной мощности при статической и стабильной работе синхронного генератора. Активная мощность синхронного генератора, подключенного к системе большой мощности, регулируется мощностью первичного двигателя. При увеличении мощности первичного двигателя, т.е.

вращающего момента первичного двигателя (паровой или гидравлической турбины), увеличивается активная составляющая тока генератора, одновременно с этим увеличивается и угол, что понижает запас устойчивости генератора.

Для того чтобы синхронный генератор не терял запаса устойчивости при увеличении активной мощности, необходимо увеличивать ток возбуждения.

  1. Векторная диаграмма генератора с невыпадающими полюсами, например, показана на рисунке 2. Текущий ток можно контролировать с помощью:
  2. ;                                                                       (3)
  3. .                                                               (4)

Объяснение. Из рисунка видно, что по мере изменения активной мощности изменяется угол δ, а затем изменяется угол , изменяется I cos, а также изменяется I sin, то есть изменяется величина реактивной мощности, а также может поменяться характер.

В частности, когда активная мощность увеличивается, ток возбуждения не изменяется, а активная мощность  увеличивается, I cos увеличивается. Тогда  увеличивается, затем sin увеличивается, то есть δ увеличивается и  уменьшается, ток якоря I увеличивается, а угол коэффициента мощности  уменьшается.

Следовательно, угол δ мощности фактически отражает угол кручения синтетического магнитного поля статора, и тем больше электромагнитная мощность  и электромагнитный момент .

Причина образования δ заключается в том, что существует поперечный ток реакции якоря  (составляющая тока якоря  в направлении ), поэтому поперечная реакция якоря заключается в том, что магнитодвижущая сила создает электромагнитный момент и выполняет электромеханическое преобразование энергии [2; 7].

Необходимые условия. Однако входная мощность от первичного двигателя не может быть увеличена без ограничений для увеличения электромагнитной мощности генератора.

Для генератора со скрытыми полюсами, когда угол мощности δ достигает 90°, электромагнитная мощность достигает максимального значения .

Если входная мощность от первичного двигателя увеличивается, новый баланс не может быть установлен и скорость двигателя будет постоянно увеличиваться и терять шаг и статическую устойчивость [2; 7; 1].

Рисунок 2. Синхронный генератор поддерживает постоянным ток возбуждения  для регулировки активной мощности генератора

3. Регулирование реактивной мощности и анализ работы синхронного генератора. Если генератор подключен параллельно к сети в идеальных условиях, указанных выше, при исследовании регулирования реактивной мощности генератора также можно считать, что мощность электросети достаточно велика, а напряжение электросети и частота не изменятся.

3.1. Анализ регулирования тока возбуждения без нагрузки. Когда ток якоря равен нулю, переключатель холостого хода замкнут, как показано на рисунке 3 (A), ток возбуждения является нормальным возбуждением; когда переключатель холостого хода замкнут, генератор не будет генерировать активную или реактивную мощность.

  • Если выходной сигнал первичного двигателя остается неизменным, ток возбуждения увеличивается, он будет в перевозбужденном состоянии, и генератор будет посылать обратный реактивный ток, чтобы вызвать реакцию размагничивания якоря, как показано на рисунке 3 (B).
  • Ток возбуждения начинает уменьшаться по сравнению с нормальным возбуждением, он будет в недовозбужденном состоянии, и генератор будет посылать опережающий реактивный ток для генерации реакции намагниченного якоря, как показано на рисунке 3 (C) [2; 8; 6; 7; 1].
  • Рисунок 3. Фазово-векторная диаграмма регулировки тока возбуждения без нагрузки

3.2. Регулировка реактивной мощности при активной нагрузке. Когда генератор нагружен активной нагрузкой и выходная активная мощность остается неизменной, взаимосвязь между током якоря генератора и током возбуждения также может быть проанализирована с помощью векторной диаграммы электродвижущей силы. Учитывая, что напряжение постоянно, а сопротивление не учитывается.

  1. Если тогда:

Когда ток возбуждения регулируется для изменения , ток статора генератора и коэффициент мощности также изменяются соответственно.

Из рисунка 3 видно, что векторная диаграмма активного тока I cos постоянная, вектор тока статора  в конце траектории представляет собой горизонтальную линию AB, перпендикулярную вектору напряжения .

Из формулы (5)  и  = , изменение вектора  в конце и вектор напряжения  параллельны прямой линии CD. В соответствии с вышеуказанными условиями на рисунке 4 представлены четыре типичные векторные диаграммы.

В первом случае нагрузка генератора только активной мощностью, без выхода реактивной мощности, минимальный ток статора для нормального возбуждения и cos = 1.

Во втором случае ток возбуждения увеличивается исходя из нормального возбуждения. В это время  находится в сверхвозбужденном состоянии. Ток статора () ниже напряжения на клеммах.

В третьем случае ток возбуждения уменьшается на основе нормального возбуждения. В это время  находится в недовозбужденном состоянии, а ток статора опережает напряжение на клеммах . В дополнение к активной мощности в сеть двигатель также передает в сеть расширенную емкостную реактивную мощность, что означает, что генератор поглощает индуктивную реактивную мощность из сети.

В четвертом случае необходимо дополнительно уменьшить ток возбуждения, электродвижущая сила  еще больше уменьшится, угол мощности и ведущий коэффициент мощности cos будут продолжать увеличиваться, чтобы увеличить значение тока статора. Однако это изменение ограничено. Когда ЭДС холостого хода достигает генератор достигнет предельного состояния стабильной работы из-за предела угла мощности < 90°.

  • Дальнейшее снижение тока возбуждения не сможет работать стабильно, а также потеряет статическую устойчивость.
  • Рисунок 4. Векторная диаграмма регулировки тока возбуждения при U = constant и = constant

4. Вывод. Регулирование активной мощности повлияет на изменение реактивной мощности. Когда активная мощность генератора увеличивается, уменьшение реактивной мощности будет вызвано постоянным током возбуждения и напряжением сети.

  1. При регулировке тока возбуждения необходимо изменить реактивную мощность, хотя на значение активной мощности двигателя это не влияет, а ток якоря сначала уменьшается, затем увеличивается.
  2. Если ток возбуждения установлен слишком низким, двигатель может потерять устойчивость и будет вынужден остановиться.
  3. Список литературы:
  1. Веников В.А. Переходные электромеханические процессы в электрических системах : учебник для электроэнергет. спец. вузов. 4-е изд., перераб. и доп. – М. : Высшая школа, 1985. – 536 с.
  2. Князевский Б.А., Липкин Б.Ю. Электроснабжение промышленных предприятий : учебник. 2-е изд., перераб. и доп. – М. : Высшая школа, 1979. – 431 с.
  3. Повышение коэффициента полезного действия в результате изменения магнитодвижущей силы обмоток машин переменного тока / И.К. Исмоилов [и др.] // Проблемы современной науки и образования. – 2019. – № 11-1 (144).
  4. Проблемы качества электроэнергии в системах электроснабжения / З.З. Туйчиев [и др.] // Проблемы науки. – 2019. – № 10 (46).
  5. Электрические цепи, содержащие нелинейные элементы, и методы их расчета / Т.К. Жабборов [и др.] // Вестник науки и образования. – 2019. – № 19-2 (73).
  6. Юрганов А.А. Сравнение российских и зарубежных стабилизаторов режима // Электротехника, энер­гетика, электроника: сб. докл. науч. конф. – СПб. : СЗПИ, 2000. – С. 30–47.
  7. Юрганов А.А., Кожевников В.А. Регулирование возбуждения синхронных генераторов. – СПб. : Наука, 1996. – С. 61–88.
  8. Jicheng Li. Design and application of modern synchronous generator excitation systems / Li Jicheng, Tsinghua University, China. – Hoboken, NJ, USA : Wiley-IEEE Press, 2019.
Ссылка на основную публикацию
Adblock
detector