Датчик оборотов шагового двигателя

  • 25 августа 2008 г. в 05:00
  • 3860

Шаговые двигатели широко используются в принтерах, автоматических инструментах, приводах дисководов, автомобильных приборных панелях и других приложениях, требующих высокой точности позиционирования.

Производители шаговых двигателей: Autonics, Motionking, Fulling motor и другие.

Шаговые двигатели: принцип действия и отличия от двигателей постоянного тока

Двигатели постоянного тока (ДПТ) с постоянными магнитами Lenze начинают работать сразу, как только к якорной обмотке будет приложено постоянное напряжение. Переключение направления тока через обмотки ротора осуществляется механическим коммутатором — коллектором. Постоянные магниты при этом расположены на статоре.

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала.

Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению.

Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели (Autonics, Motionking, Fulling motor) и серводвигатели (Lenze). Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (n шагов на один оборот ротора) и плавности вращения синхронного двигателя.

Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении.

В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис. 1).

Датчик оборотов шагового двигателя

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

Датчик оборотов шагового двигателя

За это упрощение приходится платить более сложным реверсированием полярности каждой пары полюсов мотора.

Шаговые двигатели имеют широкий диапазон угловых разрешений. Более грубые моторы обычно вращаются на 90° за шаг, в то время как прецизионные двигатели могут иметь разрешение 1,8° или 0,72° на шаг.

Если контроллер позволяет, то возможно использование полушагового режима или режима с более мелким дроблением шага (микрошаговый режим), при этом на обмотки подаются дробные значения напряжений, зачастую формируемые при помощи ШИМ-модуляции.

Если в процессе управления используется возбуждение только одной обмотки в любой момент времени, то ротор будет поворачиваться на фиксированный угол, который будет удерживаться пока внешний момент не превысит момента удержания двигателя в точке равновесия.

Для правильного управления биполярным шаговым двигателем необходима электрическая схема, которая должна выполнять функции старта, стопа, реверса и изменения скорости.

Шаговый двигатель транслирует последовательность цифровых переключений в движение. «Вращающееся» магнитное поле обеспечивается соответствующими переключениями напряжений на обмотках.

Вслед за этим полем будет вращаться ротор, соединенный посредством редуктора с выходным валом двигателя.

Каждая серия содержит высокопроизводительные компоненты, отвечающие все возрастающим требованиям к характеристикам современных электронных применений.

Схема управления для биполярного шагового двигателя требует наличия мостовой схемы для каждой обмотки. Эта схема позволит независимо менять полярность напряжения на каждой обмотке.

На рисунке 3 показана последовательность управления для режима с единичным шагом.

Датчик оборотов шагового двигателя

На рисунке 4 показана последовательность для полушагового управления.

Датчик оборотов шагового двигателя

Максимальная скорость движения определяется исходя из физических возможностей шагового двигателя. При этом скорость регулируется путем изменения размера шага. Более крупные шаги соответствуют большей скорости движения.

  • В системах управления электроприводами для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.
  • Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро%аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.
  • Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота.

Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К).

Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

Шаговые двигатели различаются по конструктивным группам: активного типа (с постоянными магнитами), реактивного типа и индукторные.

Датчик оборотов шагового двигателя

Шаговые синхронные двигатели активного типа

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.

Различают два вида коммутации обмотки шагового двигателя: симметричная и несимметричная.

При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления.

Датчик оборотов шагового двигателя

При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

Датчик оборотов шагового двигателя

Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде «звездочки».

Датчик оборотов шагового двигателя

Число тактов KT системы управления называют количеством состояний коммутатора на периоде его работы T. Как видно из рисунков для симметричной системы управления KT=4, а для несимметричной KT=8.

  1. В общем случае число тактов KT зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:
  2. KT = mуn1n2,
  3. где: n1=1 — при симметричной системе коммутации;
  4. n1=2 — при несимметричной системе коммутации;
  5. n2=1 — при однополярной коммутации;
  6. n2=2 — при двуполярной коммутации.

Датчик оборотов шагового двигателя

При однополярной коммутации ток в обмотках управления протекает в одном направлении, а при двуполярной — в обеих. Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора.

Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают. Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1).

Для примера приведем двуполюсный трехфазный шаговый двигатель.

Датчик оборотов шагового двигателя

Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:

αш=360/Ктр

Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р=4…6. Обычно величина шага ротора активных шаговых двигателей составляет десятки градусов.

Реактивные шаговые двигатели

У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

  • Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.
  • При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.
  • Величина углового шага редукторного реактивного шагового двигателя определится выражением:
  • αш=360/КтZр

В выражении для KT величину n2 следует брать равной 1, т.к. изменение направления поля не влияет на положение ротора.

Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления.

Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то — 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.

Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д.

Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора.

При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики

Линейные шаговые синхронные двигатели

При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнито-провода ротора сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя.

Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления t/4.

  1. ΔXш=tz/Кt
  2. где Kt — число тактов схемы управления.
  3. Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора.

Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором.

Читайте также:  Влияние угла опережения зажигания на работу двигателя

При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

Режимы работы синхронного шагового двигателя

Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода xследующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла.

Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

  • В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.
  • Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.
  • Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

Приемлемость падает с увеличением нагрузки.

В. П. Колодийчик.

Сага о абсолютном энкодере и шаговом двигателе

alexxy Датчик оборотов шагового двигателя Загрузка

04.05.2019

15427

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

42

Давно я тут не писал постов про принтеры и электронику, но тут назрела тема использования абсолютного энкодера и попытке сделать вменяемое упралвение шаговым двигателем с рассчётом на точность позиционирования (не путать с повторяемостью).

В качестве подопытного было приобретено несколько разных магнитных энкодеров наподобие тех, что используются в таких проектах как mechaduino (или его китайская инкарнация как MSK Servo42) или же в системах стабилизации камер (внезапно там используются те же магнитные энкодеры). В итоге у меня оказалось два их от разных производителей:

  • AS5048A с разрешением 12bit (если пересчитать в угол по нехитрой формуле 360/2**12 ~ 0.08789 градуса)
  • TLE5012b с разрешением 15bit (опять же если пересчитать в угол то 360/2**15 ~ 0.01099 градуса)

В итоге я остановился на втором варианте, так как его разрешения хватает что бы легко ловить повороты даже для двигателя в 400 шагов на оборот при 32 микрошаге (а это получится примерно так 360/(400*32) ~ 0.028125 градуса), хотя это уже и экстремальный вариант.

На макетке была собрана конструкция из stm32f103c8t6 aka bluepill энкодера и драйвера шагового двигателя tmc2130 (взял то что было под руками). Всё это счастье было запрограммировано на довольно простые действия:

  • stm32 имеет прерывания на трех пинах которые подключены к Step/Dir/Enable на плате управления принтером
  • при получении сигналов на Step/Dir/Enable производится stm32 делает шаг через tmc2130
  • после завершения шага (если успевает) считывает положение двигателя через энкодер tle5012b (на валу двигателя помещён магнит)
  • stm32 печатает в UART инфу о количестве шагов, микрошаге, количесве оборотов и текущем угле поворота двигателя (энкодер таки абсолютный и умеет считать обороты)

Дальше у меня возникла идея проверить насколько точно шаговик встаёт по шагам. Для этого в управляющей плате принтера (которая тоже stm32 но пожирнее) были выставлены виртуальные 80 steps/mm для оси X (в принципе это значение стандартное для 20 зубой шпули для GT2) а драйвер двигателя был выставлен в 16 микрошаг (двигатель у меня 1.8 градуса, 200 шагов на оборот, и как следствия с 16 микрошагом каждый шаг соответсвует 360/(200*16) = 0.1125 градуса, запомним эту цифру). Я решил посмотреть как у нас зависит точность выставления угла поворота от скорости принтера (а как следствие и точность).

Как происходило тестирование:

  • Был выбран набор скоростей: 10, 25, 50, 75, 100, 125, 150, 200, 250 мм/с
  • Для каждой скорости передвижение с X0 до X160 и обратно и ожидание в крайних положения по 2 секунды (это 4 оборота движка в одну строну и в другую) повторялось по 25 раз
  • Данные с энкодера писались в лог (скриптик с сериал консоли всё писал в файлики)

В итоге получилось довольно занятная картинка:Датчик оборотов шагового двигателя На картинке выше нарисована статистика собранная по каждой скорости в виде так называемого boxplot (прямоугольник это все значения которые были в измерениях и лежат в пределах одного стандартного отклонения, зеленая линия это среднее значение, оражевая линия это медиана). На картинке нарисовано отклонение от значения медианы для каждой измеренной точки для каждой скорости. Как её интерпретировать:

  • На низких скоростях (до 50 мм/с), у нас повторяемость очень неплохая, на уровне погрешности измерения энкодера
  • На скорости 75мм/с (а это у нас ~1.875 оборота в секунду) ошибка повторяемости позиционирования шаговика становится сравнимой с одним микрошагом
  • На скоростях 100, 125, 150 и 200 мм/с у нас ошибка повторяемости позиционирования шаговика снова становится сравнимой с погрешностью датчика угла поворота (особенность драйвера tmc2130, для него это другой режим работы и он пытается делать точное позиционирование)
  • А вот на скорости в 250мм/с система идёт в разнос и повторяемость падает до ~0.7 градусов (что примерно 7 шагов при дроблении 1/16, или если пересчитать в мм то это будет ~0.1 мм в среднем)

Но это если речь идёт о повторяемости а не о точности. А это разные понятия. Так что теперь поговрим про точность. Будем считать, как это далают прошивки большниства принтеров, что перемещение на один микрошаг у нас всегда одианково (в данном случае это 0.1125 градуса или 0.0125 мм если у нас 80 шагов на мм). Посмотрим насколько это так.

То что мы видим при скорости 10мм/с (да довольно медленно)

Датчик оборотов шагового двигателя На картинках нарисовано чтение с датчика и счётчик шагов (данные датчика это синяя линия) а так же идеальные значения углов для данного номера шага (хе хе, довольно просто посчитать) а так же вертикальными черточками различия реально измеренного от идеального. Какие выводы можно сделать по этой картинке:

  • Шаги у нас не равномерны (что в целом понятно, исходя из физики двигателя)
  • Какие то шаги у нас почти точно попадают в идеальные значения углов поворота (но не все…, совсем не все…)
  • Хотя точность позиционирования у нас не очень высокая, но повторяемость хорошая (синяя линия на картинке это статистика по 25 повторам

Теперь посмотрим что будет если шаговик пойдёт немного быстрее 25 мм/с

Датчик оборотов шагового двигателя Картинка в целом не поменялась, но ошибка позиционирования возросла (разница между реальным и идеальным положением)

Теперь 50 мм/с

Датчик оборотов шагового двигателя Видно что позиционирование стало ещё хуже…

Теперь 75 мм/с

Датчик оборотов шагового двигателя Всё поплыло ещё дальше…

100 мм/с

Датчик оборотов шагового двигателя Ошибка осталась на прежнем уровне (tmc2130 перешел в другой режим работы)

125мм/с

Датчик оборотов шагового двигателя 150 мм/сДатчик оборотов шагового двигателя 200 мм/сДатчик оборотов шагового двигателя и 250мм/с Как видим, с увеличением скорости ошибка позиционирования растёт… Что можно нарисовать примерно так… Картинка похожа на первую. Опять же зеленая линия это среднее. Оражневая медиана. Какие выводы можно сделать?

  • Что приятно средняя ошибка позиционирования примерно 0. Что означает что шаговик с одинаковой вероятность как проскакивает положение, так и недоходит до него (по этому среднее и есть 0).
  • А вот медиана уже становится большой. На уровне 0.5-0.8 градуса.
  • Разброс ошибок довольно большой, он растёт с примерно 0.2 градусов при 10мм/с до 4 градусов при 250мм/с, что соответсвует разбросу хода от 0.02 до 0.5 мм (хе хе.. кто там хвастался что печатает на скорости 200+мм/с….?)
  • Ещё замечу, что всё это измерялось на свободном шаговике без нагрузки. С нагрузкой будет все печальнее (и я это проверю в следующей части)

Что из всего этого следует?

Если хочется повышать качество печати, то надо слегка поменять подход к позиционирования шаговика в прошивках (позицоинирование у него не линейное, и это надо учитывать). По идее надо сделать умный closed-loop шаговик, которые будет в состоянии корректировать нелинейности при перемещении.

Продолжение следует…

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

42

Шаговый двигатель

Дмитрий Левкин

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи.

Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Конструкция шагового электродвигателя

Шаговый двигатель, как и любой вращающийся электродвигатель, состоит из ротора и статора. Статор — неподвижная часть, ротор — вращающаяся часть.

Читайте также:  В чем различие двигателя газ 53 от газ 66

Датчик оборотов шагового двигателя

Гибридный шаговый электродвигатель

Шаговые двигатели надежны и недороги, так как ротор не имеет контактных колец и коллектора. Ротор имеет либо явно выраженные полюса, либо тонкие зубья. Реактивный шаговый двигатель — имеет ротор из магнитомягкого материала с явно выраженными полюсами. Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах.

Гибридный шаговый двигатель имеет составной ротор включающий полюсные наконечники (зубья) из магнитомягкого материала и постоянные магниты.

Определить имеет ротор постоянные магниты или нет можно посредством вращения обесточенного двигателя, если при вращении имеется фиксирующий момент и/или пульсации значит ротор выполнен на постоянных магнитах.

Статор шагового двигателя имеет сердечник с явно выраженными полюсами, который обычно делается из ламинированных штампованных листов электротехнической стали для уменьшения вихревых токов и уменьшения нагрева. Статор шагового двигателя обычно имеет от двух до пяти фаз.

Характеристики

Так как шаговый двигатель не предназначен для непрерывного вращения в его параметрах не указывают мощность. Шаговый двигатель — маломощный двигатель по сравнению с другими электродвигателями.

Одним из определяющих параметров шагового двигателя является шаг ротора, то есть угол поворота ротора, соответствующий одному импульсу. Шаговый двигатель делает один шаг в единицу времени в момент изменения импульсов управления.

Величина шага зависит от конструкции двигателя: количества обмоток, полюсов и зубьев. В зависимости от конструкции двигателя величина шага может меняться в диапазоне от 90 до 0,75 градусов.

С помощью системы управления можно еще добиться уменьшения шага пополам используя соответствующий метод управления.

Типы шаговых двигателей

Реактивный шаговый двигатель

Реактивный шаговый двигатель — синхронный реактивный двигатель.

Статор реактивного шагового двигателя обычно имеет шесть явновыраженных полюсов и три фазы (по два полюса на фазу), ротор — четыре явно выраженных полюса, при такой конструкции двигателя шаг равен 30 градусам.

В отличии от других шаговых двигателей выключенный реактивный шаговый двигатель не имеет фиксирующего (тормозящего) момента при вращении вала.

Ниже представлены осциллограммы управления для трехфазного шагового двигателя.

Осциллограммы управления для четырехфазного шагового двигателя показаны на рисунке ниже. Последовательное включение фаз статора создает вращающееся магнитное поле за которым следует ротор. Однако из-за того, что ротор имеет меньшее количества полюсов, чем статор, ротор поворачивается за один шаг на угол меньше чем угол статора. Для реактивного двигателя угол шага равен:

Датчик оборотов шагового двигателя

  • где NR — количество полюсов ротора;
  • NS – количество полюсов статора.

Чтобы изменить направление вращения ротора (реверс) реактивного шагового двигателя, необходимо поменять схему коммутации обмоток статора, так как изменение полярности импульса не изменяет направления сил, действующих на невозбужденный ротор [2].

Реактивные шаговые двигатели применяются только тогда, когда требуется не очень большой момент и достаточно большого шага угла поворота. Такие двигатели сейчас редко применяются.

    Отличительные черты:

  • ротор из магнитомягкого материала с явно выраженными полюсами;
  • наименее сложный и самый дешевый шаговый двигатель;
  • отсутствует фиксирующий момент в обесточенном состоянии;
  • большой угол шага.

Шаговый двигатель с постоянными магнитами

Шаговый двигатель с постоянными магнитами имеет ротор на постоянных магнитах. Статор обычно имеет две фазы.

По сравнению с реактивными, шаговые двигатели с активным ротором создают большие вращающие моменты, обеспечивают фиксацию ротора при снятии управляющего сигнала. Недостаток двигателей с активным ротором — большой угловой шаг (7,5—90°).

Это объясняется технологическими трудностями изготовления ротора с постоянными магнитами при большом числе полюсов.

Если угол фиксации находится в диапазоне от 7,5 до 90 градусов скорее всего это шаговый двигатель с постоянными магнитами нежели гибридный шаговый двигатель.

Обмотки могут иметь ответвление в центре для работы с однополярной схемой управления. Двухполярное управление требуется для питания обмоток без центрального ответвления.

Униполярный (однополярный) шаговый двигатель

Униполярный шаговый двигатель с постоянными магнитами имеет одну обмотку на фазу с ответвлением в центре. Каждая секция обмотки включается отдельно.

Таким образом расположение магнитных полюсов может быть изменено без изменения направления тока, а схема коммутации может быть выполнена очень просто (например на одном транзисторе) для каждой обмотки. Обычно центральное ответвление каждой фазы делается общим, в результате получается три вывода на фазу и всего шесть для обычного двухфазного двигателя.

Легкое управление однополярными двигателями сделало их популярными для любителей, они возможно являются наиболее дешевым способом чтобы получить точное угловое перемещение.

Биполярный шаговый двигатель

Двухполярные двигатели имеют одну обмотку на фазу. Для того чтобы изменить магнитную полярность полюсов необходимо изменить направление тока в обмотке, для этого схема управления должна быть более сложной, обычно с H-мостом. Биполярный шаговый двигатель имеет два вывода на фазу и не имеет общего вывода.

Так как пространство у биполярного двигателя используется лучше, такие двигатели имеют лучший показатель мощность/объем чем униполярные.

Униполярный двигатель имеет двойное количество проводников в том же объеме, но только половина из них используется при работе, тем не менее биполярный двигатель сложнее в управление.

Управление шаговым двигателем с постоянными магнитами

Для управления шаговым двигателем на постоянных магнитах к его обмоткам прикладывается сфазированный переменный ток. На практике это почти всегда прямоугольный сигнал сгенерированный от источника постоянного тока.

Биполярная система управления генерирует прямоугольный сигнал изменяющийся от плюса к минусу, например от +2,5 В до -2,5 В.

Униполярная система управления меняет направление магнитного потока катушки посредством двух сигналов, которые поочереди подаются на противоположные выводы катушки относительно ее центрального ответвления.

Волновое управление

Простейшим способом управления шаговым двигателем является волновое управление. При таком управлении в один момент времени возбуждается только одна обмотка. Но такой способ управления не обеспечивает максимально возможного момента.

Датчик оборотов шагового двигателя

Положение ротора шагового двигателя при волновом управлении

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора.

Датчик оборотов шагового двигателя

Волновое управление биполярным шаговым двигателем

На рисунке выше представлены схема биполярного шагового двигателя и двухполюсные осциллограммы управления. При таком управлении обе полярности («+» и «-«) подаются на двигатель. Магнитное поле катушки поворачивается за счет того, что полярность токов управления меняется.

Датчик оборотов шагового двигателя

Волновое управление униполярным шаговым двигателем

На рисунке выше представлены схема униполярного шагового двигателя и однополюсные осциллограммы управления.Так как для управления униполярным шаговым двигателем требуется только одна полярность это существенно упрощает схему системы управления. При этом требуется генерация четырех сигналов так как необходимо два однополярных сигнала для создания переменного магнитного поля катушки.

Необходимое для работы шагового двигателя переменное магнитное поле может быть создано как униполярным так и биполярным способом. Однако для униполярного управления катушки двигателя должны иметь центральное ответвление.

Шаговый двигатель с постоянными магнитами может иметь разную схему соединения обмоток статора. Схемы соединения шагового двигателя показаны на рисунке ниже.

Шаговый двигатель с 4 выводами может управляться только биполярным способом. 6-выводной двигатель предназначен для управления униполярным способом, несмотря на то, что он также может управляться биполярным способом если игнорировать центральные выводы.

5-выводной двигатель может управляться только униполярным способом, так как общий центральный вывод соединяет обе фазы. 8-выводная конфигурация двигателя встречается редко, но обеспечивает максимальную гибкость. Такой двигатель может быть подключен для управления также как 6- или 5- выводной двигатель.

Пара обмоток может быть подключена последовательно для высоковольтного биполярного управления с малыми токами или параллельно для низковольтного управления с большими токами.

    8-выводные двигатели могут быть соединены в нескольких конфигурациях:

  • униполярной;
  • биполярной с последовательным соединением. Больше индуктивность, но ниже ток обмотки;
  • биполярной с параллельным соединением. Больше ток, но ниже индуктивность;
  • биполярной с одной обмоткой на фазу. Метод использует только половину обмоток двигателя при работе, что уменьшает доступный момент на низких оборотах, но требует меньше тока.

Полношаговое управление

Полношаговое управление обеспечивает больший момент, чем волновое управление так как обе обмотки двигателя включены одновременно. Положение ротора при полношаговом управлении показано на рисунке ниже.

Датчик оборотов шагового двигателя

Положение ротора шагового двигателя при полношаговом управлении

Датчик оборотов шагового двигателя

Полношаговое биполярное управление шаговым двигателем

Полношаговое биполярное управление показанное на рисунке выше имеет такой же шаг как и при волновом управлении.

Униполярное управление (не показано) потребует два однополярных управляющих сигнала для каждого биполярного сигнала. Однополярное управление требует менее сложной и дорогой схемы управления.

Дополнительная стоимость биполярного управления оправдана когда требуется более высокий момент.

Полушаговое управление

Шаг для данной геометрии шагового двигателя делится пополам. Полушаговое управление обеспечивает большее разрешение при позиционировании вала двигателя.

Датчик оборотов шагового двигателя

Положение ротора шагового двигателя при полушаговом управлении

Полушаговое управление — комбинация волнового управления и полношагового управления с питанием по очереди: сначала одной обмотки, затем с питанием обоих обмоток. При таком управлении количество шагов увеличивается в двое по сравнению с другими методами управления.

Датчик оборотов шагового двигателя

Полушаговое биполярное управление шаговым двигателем

Гибридный шаговый двигатель

Гибридный шаговый двигатель был создан с целью объединить лучшие свойства обоих шаговых двигателей: реактивного и с постоянными магнитами, что позволило добиться меньшего угла шага. Ротор гибридного шагового двигателя представляет из себя цилиндрический постоянный магнит, намагниченный вдоль продольной оси с радиальными зубьями из магнитомягкого материала.

Датчик оборотов шагового двигателя

Конструкция гибридного шагового двигателя (осевой разрез)

Статор обычно имеет две или четыре фазы распределенные между парами явно выраженных полюсов. Обмотки статора могут иметь центральное ответвление для униполярного управления. Обмотка с центральным ответвлением выполняется с помощью бифилярной намотки.

Гибридный шаговый двигатель (радиальный разрез)

Заметьте что 48 зубьев на одной секции ротора смещены на половину зубцового деления λ относительно другой секции (рисунок ниже). Из-за этого смещения ротор фактически имеет 96 перемежающихся полюсов противоположной полярности.

Читайте также:  Двигатели каких автопроизводителей самые надежные

Ротор гибридного шагового двигателя

Зубья на полюсах статора соответствуют зубьям ротора, исключая отсутствующие зубья в пространстве между полюсами. Таким образом один полюс ротора, скажем южный полюс, можно выровнять со статором в 48 отдельных положениях. Однако зуб южного полюса ротора смещен относительно северного зуба на половину зубцового деления. Поэтому ротор может быть выставлен со статором в 96 отдельных положениях.

Соседние фазы статора гибридного шагового двигателя смещены друг относительно друга на одну четверть зубцового деления λ. В результате ротор перемещается с шагом в четверть зубцового деления во время переменного возбуждения фаз. Другими словами для такого двигателя на один оборот приходится 2×96=192 шага.

    Шаговый гибридный двигатель имеет:

  • шаг меньше, чем у реактивного двигателя и двигателя с постоянными магнитами;
  • ротор — постоянный магнит с тонкими зубьями. Северные и южные зубья ротора смещены на половину зубцового деления для уменьшения шага;
  • полюсы статора имеют такие же зубья как и ротор;
  • статор имеет не менее чем две фазы;
  • зубья соседних полюсов статора смещены на четверть зубцового деления для создания меньшего шага.

Регулятор скорости вращения для униполярного шагового двигателя на базе Arduino UNO

Коротко о том с чего все началось. Однажды появилась потребность в демонстрационном столике или как еще его называют вращающийся столик.

Покупать готовый не стал в связи с тем что жалко портить новый, да и к тому же столики имеющиеся в продаже по некоторым характеристикам не подходят для моих целей.

Для этой цели решил использовать Arduino и шаговый двигатель в связи с тем что он может вращаться на низких скоростях что и требуется для этой цели.

Если у вас возникнут вопросы по данной теме то вы можете их задать в х под видео в YouTube перейдя по этой ссылке www.youtube.com/Мастер Колотушкин

1 шаг. Что понадобится для проекта:

Arduino UNO 1 штука.

Датчик оборотов шагового двигателя

USB кабель для подключения Arduino UNO к компьютеру 1 штука и конечно же сам компьютер с установленным приложением Arduino IDE

Униполярный шаговый двигатель 28BYJ-48 5V на 5 вольт и драйвер к нему на базе микросхемы ULN2003 который обычно идет в комплекте с шаговым двигателем, 1 комплект.

Соединительные провода мама мама для подключения линий питания 2 штуки.

Датчик оборотов шагового двигателя

Соединительные провода папа мама для подключения управляющих электрических цепей 4 штуки.

Датчик оборотов шагового двигателя

Потенциометр с сопротивлением от 3 до 50 киллоом 1 штука, с заранее припаяными проводами типа папа. Зеленый подпаян к средней ноге потенциометра!

2 шаг. Подключить Arduino UNO к компьютеру с помощью кабеля

3 шаг. Запустить приложение Arduino IDE (подойдет любая версия)

Датчик оборотов шагового двигателя

4 шаг. Открыть скетч (прошивка для Arduino) Файл/ Примеры/ Stepper/ stepper_speedControl

Датчик оборотов шагового двигателя

Если у вас по какой-то причине отсутствует данный скетч то вы можете его скопировать с окна ниже и вставить в чистое поле приложения ArduinoIDE. После чего можно приступать к 5 шагу.

#include «Stepper.h» const int stepsPerRevolution = 200; // количество шагов на 1 оборот Stepper myStepper(stepsPerRevolution, 8, 9, 10, 11); // контакты к которым подключается шаговый двигатель int stepCount = 0; void setup() {  } void loop() {  int sensorReading = analogRead(A0);  // контакт А0 считывает сигнал с потенциометра  int motorSpeed = map(sensorReading, 0, 1023, 0, 100);  // карта: значения 0, 1023 это от 0 до +5 вольт с потенциометра  // карта: значения 0, 100 это скорость вращения шагового  // двигателя от 0 до 100 шагов в секунду  if (motorSpeed > 0) {    myStepper.setSpeed(motorSpeed);    myStepper.step(stepsPerRevolution / 100);  } }

А если у вас не оказалось библиотеки Stepper, то можете воспользоваться скетчем ниже, который работает без библиотек.

void setup() {  // 8, 9, 10, 11 контакты к которым подключается шаговый двигатель  pinMode(8, OUTPUT); pinMode(9, OUTPUT);  pinMode(10, OUTPUT); pinMode(11, OUTPUT); } void loop() {  // контакт А0 считывает сигнал с потенциометра  int sensorReading = analogRead(A0);  int t = map(sensorReading, 0, 1023, 1, 20);  digitalWrite(11, HIGH); digitalWrite(9, LOW);  delay(t);  digitalWrite(10, HIGH); digitalWrite(8, LOW);  delay(t);  digitalWrite(9, HIGH); digitalWrite(11, LOW);  delay(t);  digitalWrite(8, HIGH); digitalWrite(10, LOW);  delay(t); }

5 шаг. Если вы как и я решили использовать плату Arduino UNO то во вкладке Инструменты/Плата: выберите пункт Arduino/Genuino Uno который обведен красным на фото ниже

6 шаг. Во вкладке Инструменты выбрать порт к которому подключена плата Arduino в моем случае это COM11 у вас может быть другой, то есть у меня галочка должна стоять на против COM11

В нижнем правом углу должно быть Arduino/Genuino на COM(номер ком порта к которому подключена плата) если все верно то переходим к следующему шагу.

7 шаг. Загружаем скетч нажав кнопку Загрузки со стрелочкой

Если вы используете скетч с этой страницы то приложение при загрузке предложит сохранить его. После чего загрузка продолжится

Через 5-45 секунд скетч загрузится и появится уведомление Загрузка завершена.

8 шаг. Отключаем Arduino от компьютера и подключаем потенциометр.

Зеленый провод который подпаян к средней ноге потенциометра подключаем контакту A0, остальные два к питанию GND (минус) и +5V (5 вольт) полярность на ваше усмотрение.

В моем случае если вращать потенциометр по часовой стрелке то скорость вращения шагового двигателя увеличивается, а если поменять местами серый с красным проводом то при вращении потенциометра так же по часовой стрелке скорость вращения шагового двигателя будет уменьшаться.

9 шаг. С помощью соединительных проводов папа мама подключаем драйвер шагового двигателя к Arduino UNO

Линия 1N1 к 8 контакту, линия 1N2 к 9 контакту, линия 1N3 к 10 контакту и линия 1N4 к 11 контакту.

10 шаг. Проводами мама мама соединяем линии питания

Такой способ подключения допустим лишь при использовании маломощных шаговых двигателей! При использовании нескольких, или более мощных шаговых двигателей следует использовать отдельный источник питания! При этом у ардуины и драйвера шагового двигателя должна быть общая земля!

11 шаг. Должно все получиться как на фото ниже! Если это так то подключаем Arduino к компьютеру или Павербанку и пробуем крутить потенциометр

Доработка демонстрационного столика для которого была применена данная схема

Счетчик оборотов шагового двигателя

Главная » Новости

Рейтинг статьи Загрузка…

  • Типы шаговых двигателей
    • Реактивный шаговый двигатель
    • Шаговый двигатель с постоянными магнитами
    • Гибридный шаговый двигатель

Предшественником шагового двигателя является серводвигатель.

Шаговые (импульсные) двигатели непосредственно преобразуют управляющий сигнал в виде последовательности импульсов в пропорциональный числу импульсов и фиксированный угол поворота вала или линейное перемещение механизма без датчика обратной связи.

Это обстоятельство упрощает систему привода и заменяет замкнутую систему следящего привода (сервопривода) разомкнутой, обладающей такими преимуществами, как снижение стоимости устройства (меньше элементов) и увеличение точности в связи с фиксацией ротора шагового двигателя при отсутствии импульсов сигнала.

Очевиден и недостаток привода с шаговым двигателем: при сбое импульса дальнейшее слежение происходит с ошибкой в угле, пропорциональной числу пропущенных импульсов [2].

Поэтому в задачах, где требуются высокие характеристики (точность, быстродействие) используются серводвигатели. В остальных же случаях из-за более низкой стоимости, простого управления и неплохой точности обычно используются шаговые двигатели.

Состав сервопривода [ править | править код ]

  1. Привод — например, электромотор с редуктором, или пневмоцилиндр,
  2. Датчик обратной связи — например, датчик угла поворота выходного вала редуктора (энкодер),
  3. Блок питания и управления (он же преобразователь частоты / сервоусилитель / инвертор / servodrive).

  4. Вход/конвертер/датчик управляющего сигнала/воздействия (может быть в составе блока управления).

Простейший блок управления электрического сервопривода может быть построен на схеме сравнения значений датчика обратной связи и задаваемого значения, с подачей напряжения соответствующей полярности (через реле) на электродвигатель.

Более сложные схемы (на микропроцессорах) могут учитывать инерцию приводимого элемента и реализовывать плавный разгон и торможение электродвигателем для уменьшения динамических нагрузок и более точного позиционирования (например, привод головок в современных жёстких дисках).

Для управления сервоприводами или группами сервоприводов можно использовать специальные ЧПУ-контроллеры, которые можно построить на базе программируемых логических контроллеров (ПЛК).

Схема подключения счетчика цэ6803в 220в

Мощность двигателей: от 0,05 до 15 кВт. Крутящие моменты (номинальные): от 0,15 до 50 Н·м.

Счетчики числа оборотов

«КОЭМЗ» ООО | Старая Купавна, Москва и Московская область

. СТ-23, СТ-26. Счетчики с концентрическим циферблатом: Н-22/Н-23, Н-46, Н-516, СТ-56 VERN/PN, СТ-57 VERNIERN. Счетчик оборотов типа СК-1. Счетчик оборотов программный СОП-105. Указатель глубины УГН-1. Счетчик оборотов СО-35 (МСО.35), СО-45 (СО.45), СО-66 (МСО.66), СО-205. Применение: панели автоматизиро-ванного контроля, лабораторные источники .

В наличии / Опт и розница

Водонепроницаемый тахометр 3-8K RPM тахометр счетчик оборотов с часовым счетчиком 85 мм бензиновый дизельный двигатель 12V 24V красная подсветка

Водонепроницаемый тахометр 3-8K RPM тахометр счетчик оборотов с часовым счетчиком 85 мм бензиновый дизельный двигатель 12V 24V красная подсветка

  • Категория: новинки
  • Код Товара : r18929
  • Наличие : В наличии
    • -Подходит для всех видов тахометрических датчиков оборотов в минуту и отображает скорость вращения двигателя.
    • -Используйте принцип движущегося магнита для привода иглы, отличающейся хорошей выносливостью и антивибрацией.
    • -IP67 водонепроницаемый и пылезащитный класс

    -Шаговые двигатели, используемые для полного спектра шаговых датчиков, отличная особенность с его меньшим энергопотреблением, более длительным сроком службы, более высокой точностью и т.д.

    1. -С изогнутым стеклом (с функцией защиты от запотевания)
    2. -С ультраширокой конструкцией рабочего напряжения( долгосрочное рабочее напряжение: 9-32В, максимум до: 36В (≤ 1 мин)).
    3. -Фиксирующий размер: 85 мм(3-3/8″)
    4. -Диапазон индикации: 0-3000RPM 4000RPM 6000RPM 8000RPM
    5. — Коэффициент скорости: 1-300 регулируемое
    6. -Рабочее напряжение: 9-32В(12В/24В)
    7. — Функции: настоящий tacho / RPM и час
    8. >-Режим работы: ЖК-дисплей, шаговый двигатель
    9. Пакет Включает В Себя:
    10. 1x инструкция по установке
Ссылка на основную публикацию
Adblock
detector