Двигатель 30 квт сколько ток

Инструкция по использованию: Чтобы перевести киловатты (кВт) в амперы (А), введите мощность P в киловаттах (кВт), напряжение U в вольтах (В), выберите коэффициент мощности PF от 0,1 до 1 (для переменного тока), затем нажмите кнопку “Рассчитать”. Таким образом будет получено значение силы тока I в амперах (А).

Калькулятор кВт в А (1 фаза, постоянный ток)

Формула для перевода кВт в А

Двигатель 30 квт сколько ток

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на напряжение U в вольтах (В).

Калькулятор кВт в А (1 фаза, переменный ток)

Формула для перевода кВт в А

Двигатель 30 квт сколько ток

Сила тока I в амперах (А) равняется мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF и напряжения U в вольтах (В).

Калькулятор кВт в А (3 фазы, переменный ток, линейное напряжение)

Формула для перевода кВт в А

Двигатель 30 квт сколько ток

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на произведение коэффициента мощности PF, напряжения U в вольтах (В) и квадратного корня из трех.

Калькулятор кВт в А (3 фазы, переменный ток, фазное напряжение)

Формула для перевода кВт в А

Двигатель 30 квт сколько ток

Сила тока I в амперах (А) равна мощности P в киловаттах (кВт), умноженной на 1000 и деленной на утроенное произведение коэффициента мощности PF и напряжения U в вольтах (В).

Как узнать ток электродвигателя? Формула тока по мощности двигателя

Для новых электродвигателей в измерении тока нет необходимости – вся информация о токах, номинальной мощности, оборотах и напряжении питания указана на бирке.

Без бирки номинальный пусковой ток рассчитывают по формуле. После снятия рабочей нагрузки с вала электродвигатель переходит в режим холостого хода.

При такой работе можно узнать исправность устройства, мощность, намагничивающий ток и коэффициент потерь в конструкциях привода.

Номинальный ток электродвигателя – это необходимый параметр при настройке защитной автоматики и подборе питающего провода. Однако, стоит учитывать, что чем выше температура окружающей среды, тем меньшего значения будет максимальный ток отключающего реле.

Формула расчета номинального тока электродвигателя по мощности

Силу тока маломощных асинхронных двигателей Аир до 30 кВт можно определить экстренным методом, с незначительной погрешностью, умножив мощность электродвигателя на 2. Таким образом получаем формулу. При полном отсутствии данных, прочтите статью как определить мощность и обороты электродвигателя без бирки?

Двигатель 30 квт сколько ток

Если трехфазный двигатель имеет мощность более 30 кВт, то следует воспользоваться формулой точного расчета номинального тока электродвигателя.

Формула определения рабочего тока по мощности электродвигателя:

Двигатель 30 квт сколько ток

  • Данная формула поможет рассчитать максимальный допустимый ток, при котором асинхронный трехфазный двигатель сможет работать долгий срок.
  • Для примера возьмем электродвигатель АИР250S6, из бирки можно понять, что:
  • Pн = 45кВт, Uн = 380В, cosφ = 0,85, n = 92% (в расчетах будет 0,92).
  • Iн = 45000/√3(380*0,85*0,92) = 45000/514,696 = 87,43А.

Как измерить пусковой ток электродвигателя

Произвести расчеты пускового тока двигателя можно по формуле:

Двигатель 30 квт сколько ток

где – номинальный ток, который вы узнали ранее.

K – кратность пускового тока (можно найти в паспорте двигателя).

Таблицы значений номинального тока двигателей АИР

Если вы знаете маркировку своего электродвигателя, то можете узнать ток из таблиц ниже:

Таблица потребляемых токов электродвигателей АИР 750 об/мин

Двигатель АИР Ток Iн, А Iп/Iн Электродвигатель Iн, А Отношение Iп/Iн
АИР71В8 1,1 3,3 АИР180М8 34,1 6,6
АИР80А8 1,49 4 АИР200М8 41,1 6,6
АИР80В8 2,17 4 АИР200L8 48,9 6,6
АИР90LА8 2,43 4 АИР225М8 60 6,5
АИР90LВ8 3,36 5 АИР250S8 78 6,6
АИР100L8 4,4 5 АИР250М8 92 6,6
АИР112МА8 6 6 АИР280S8 111 7,1
АИР112МВ8 7,8 6 АИР280М8 150 6,2
АИР132S8 10,3 6 АИР315S8 178 6,4
АИР132М8 13,6 6 АИР315М8 217 6,4
АИР160S8 17,8 6 АИР355S8 261 6,4
АИР160М8 25,5 6,5

Номинальный и пусковой ток электродвигателей 1000 об/мин

 Мотор АИР Iн, А Iп/Iн Электромотор Iн, А Iп/Iн
АИР 63А6 0,8 4,1 АИР160M6 31,6 7
АИР 63В6 1,1 4 АИР180М6 38,6 7
АИР71А6 1,3 4,7 АИР200М6 44,7 7
АИР71В6 1,8 4,7 АИР200L6 59,3 7
АИР80А6 2,3 5,3 АИР225М6 71 7
АИР80В6 3,2 5,5 АИР250S6 86 7
АИР90L6 4 5,5 АИР250М6 104 7
АИР100L6 5,6 6,5 АИР280S6 142 6,7
АИР112МА6 7,4 6,5 АИР280М6 169 6,7
АИР112МВ6 9,75 6,5 АИР315S6 207 6,7
АИР132S6 12,9 6,5 АИР315М6 245 6,7
АИР132М6 17,2 6,5 АИР355S6 292 6,7
АИР160S6 24,5 6,5 АИР355М6 365 6,7

Рабочий ток трехфазного двигателя 1500 об/мин

Электродвигатель АИР Iн, А Iп/Iн Двигатель 1500 об/мин Iн, А Iп/Iн
АИР 56А4 0,5 4,6 АИР160S4 30 7,5
АИР 56В4 0,7 4,9 АИР160М4 36,3 7,5
АИР 63А4 0,82 5,1 АИР180S4 43,2 7,5
АИР 63В4 2,05 5,1 АИР180M4 57,6 7,2
АИР71А4 1,17 5,2 АИР200M4 70,2 7,2
АИР71В4 2,05 6 АИР225М4 103 7,2
АИР80А4 2,85 6 АИР250S4 138,3 6,8
АИР80В4 3,72 6 АИР250М4 165,5 6,8
АИР90L4 5,1 7 АИР280S4 201 6,9
АИР100S4 6,8 7 АИР280М4 240 6,9
АИР100L4 8,8 7 АИР315S4 288 6,9
АИР112М4 11,7 7 АИР315М4 360 6,9
АИР132S4 15,6 7 АИР355S4 360 6,9
АИР132М4 22,5 7 АИР355М4 559 6,9

Таблица номинального тока электродвигателей 3000 об/мин

Электромотор Iн, А Iп/Iн Электродвигатель Iн, А Iп/Iн
АИР 56А2 0,5 5,3 АИР180S2 41 7,5
АИР 56В2 0,73 5,3 АИР180M2 55,4 7,5
АИР 63А2 1 5,7 АИР200М2 67,9 7,5
АИР 63В2 2,05 5,7 АИР200L2 82,1 7,5
АИР71А2 1,17 6,1 АИР200L4 84,9 7,2
АИР71В2 2,6 6,9 АИР225М2 100 7,5
АИР80А2 3,46 7 АИР250S2 135 7
АИР80В2 4,85 7 АИР250М2 160 7,1
АИР90L2 6,34 7,5 АИР280S2 195 6,6
АИР100S2 8,2 7,5 АИР280М2 233 7,1
АИР100L2 11,1 7,5 АИР315S2 277 7,1
АИР112М2 14,9 7,5 АИР315М2 348 7,1
АИР132М2 21,2 7,5 АИР355S2 433 7,1
АИР160S2 28,6 7,5 АИР355М2 545 7,1
АИР160М2 34,7 7,5

Если не получилось узнать значение тока

  1. Номинальный ток – необходимый параметр для настройки защитной автоматики (тепловое реле, мотор-автоматы, релейная защита) и подбора питающего кабеля
  2. При некорректном определении тока, настройка защитной автоматики и подбор провода становятся невозможными, что может привести к сгоранию кабеля и поломке двигателя.
  3. Если у вас не получилось рассчитать силу тока или нет на это времени, позвоните и наши специалисты ответят на все ваши вопросы.

Как определить ток электродвигателя по мощности? обновлено: 1 сентября, 2021 автором: АИР Украины

Перевод ампер в киловатты и обратный расчет с практическими примерами

Амперы и киловатты являются основными характеристиками электроэнергии. Значение ампер еще называют нагрузкой, а киловатт – мощностью. Необходимость перевода этих единиц из одной в другую возникает, когда нужно понять, какое защитное реле можно установить в электрической цепи, чтобы не повредить подключенный к ней прибор.

В материале, который изложен ниже, даются конкретные примеры и формулы расчетов для разных типов электрических сетей и пояснения по проведению таких расчетов.

Если мы посмотрим на маркировку большинства устройств, которые работают от электросети, то в обозначениях характеристик прибора обычно указывается только сила тока, то есть значение в амперах. Но есть еще и мощность тока, которая измеряется в киловаттах.

А этот показатель особенно важен, когда нужно подобрать защитное сетевое устройство, которое устанавливается в электрическую сеть. Правильный выбор автоматического реле позволяет обезопасить подключаемые к сети устройства от выхода из строя из-за пиковых нагрузок напряжения, а провода сети от возгорания.

Теорию и примеры таких расчетов мы рассмотрим ниже.

Читайте также:  Альфа ромео 156 характеристики двигателя

Необходимость перевода ампер в киловатты

Мощность и сила тока две основные характеристики, которые необходимо знать, чтобы правильно установить защитные устройства при работе с электрическими приборами, подключаемыми к сети. Каждый подключенный к сети прибор должен быть защищен индивидуально подбираемыми защитными устройствами.

В то же время, проводка электросети может оплавиться и загореться, если защитные устройства подобраны неправильно и не соответствуют техническим характеристикам сети.

Ведь все электрические провода, которые используются, имеют собственную токонесущую способность, зависящую от сечения жилы провода, причем нужно учитывать материал, из которого эти жилы произведены.

Защитные устройства обычно срабатывают при скачках напряжения, которые могут вывести из строя приборы, включенные в сеть на этот момент.

Чтобы этого не произошло, защита должна отключить ветку, к которой подключены маломощные приборы. Но на реле стоит только обозначение силы тока в амперах.

А электроприборы, которые мы включаем в сеть, маркируются потребляемой мощностью в ваттах и киловаттах. Связь между мощностью и силой тока очень тесная.

Чтобы это понять, нужно разобраться в терминологии и принципах действия электрической сети.

  • Обычно рассматривают напряжение в сети, которое представляет собой разность потенциалов, то есть работу, которая происходит при перемещении электрического заряда от одной точки в электрической сети к другой. Напряжение в любой электрической сети обозначается в вольтах.
  • Силой тока, которая измеряется в амперах, называется число ампер, проходящих по проводнику за определенную единицу времени.
  • Мощностью тока называется скорость перемещения заряда по проводнику и измеряется она в ваттах или киловаттах.

Двигатель 30 квт сколько ток

Чтобы электрические приборы высокой мощности могли нормально работать в сети, она должна обладать высокой скоростью передачи энергии, проходящей через эту сеть, то есть в сети должен быть ток высокой мощности.

Поэтому автоматы, которые срабатывают на увеличение нагрузки на прибор, должны иметь более высокий порог реакции на пиковую нагрузку, чем для менее мощных устройств, подключаемых к данной конкретной электрической сети.

Для создания резерва безопасности работы таких автоматов и возникает необходимость расчета точной нагрузки.

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах.

Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях.

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Двигатель 30 квт сколько ток

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

  Какими инструментами штробить стену под проводку

  • Вт = 1А х 1В
  • На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:
  • 12А х 220В = 2640 Вт = 2,6 КВт

Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания.

А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ.

При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.

В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.

Трехфазная электрическая сеть

Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.

  1. Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:
  2. Ватт = √3 Ампер х Вольт или Р = √3 х U x I
  3. Ампер = √3 Вольт или I = P/√3 x U

При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.

Для цепей с переменным током существует негласное правило такого расчета: сила тока делится пополам, чтобы подобрать мощность защитных и пусковых реле. Это же правило применяется и когда рассчитывают диаметр проводника в таких электрических цепях.

Перевод ампер в киловатты

Сейчас в Интернете есть множество специальных программ, в которых прямо онлайн можно, подставив свои данные, произвести нужные расчеты. Но если по какой-то причине подключиться к Интернету невозможно, а сделать расчет необходимо в данный момент, достаточно произвести простые арифметические действия, чтобы получить искомый результат.

  Способы соединения витой пары

Пример 1 – перевод для однофазной сети 220 В

  • Чтобы рассчитать, например, предельную мощность автоматического однополюсного реле с номинальным током 16А, производим расчет по формуле:
  • P = U x I
  • Подставляя в формулу цифровые значения получаем:
  • Р = 220В х 16А = 3520Вт = 3,5КВт
  • То есть реле-автомат, который можно установить в эту электрическую цепь, должен выдерживать нагрузку подключенных приборов не ниже 3,5 КВт.
  • Так же можно подсчитать сечение провода, например, для тостера на 1,5 КВт:
  • I = P : U = 1500 : 220 = 7А

Но при этом достаточно важным фактором является то, что при подборе проводов нужно учитывать материал используемого проводника. Так, используя медный провод, необходимо знать, что он выдержит нагрузки вдвое большие, чем алюминиевый провод такого же сечения.

Читайте также:  Все о чип тюнинге дизельных двигателей

Пример 2 – обратный перевод в однофазной бытовой сети

Теперь рассмотрим усложненную задачу, когда в сети задействовано несколько подключенных электрических устройств, для которых нужно подобрать автоматическое реле, оптимально выдерживающее мощность подключенных приборов, например, когда одновременно подключены:

  • 2 лампы накаливания по 100 Вт;
  • бытовой обогреватель мощностью 2 кВт;
  • телевизор мощностью 0,5 кВт.
  1. Чтобы подсчитать общую мощность подключенных к сети приборов, работающих одновременно, нужно их мощность в киловаттах перевести в ватты и суммировать данные:
  2. 100+100+2000+500= 2700Вт или 2,7кВт
  3. Показатель силы тока в этом конкретном случае будет:
  4. I = P : U = 2900Вт : 220В = 13,2А

То есть, в имеющемся примере расчета, необходимо установить автомат с номинальным током, который равен или превышает полученное значение. По расчетам, выбирая однофазное стандартное реле, вполне достаточно поставить сюда автомат на 16А.

Пример 3 – расчет для трехфазной сети ампер в киловатт

  • Делая расчет перевода одних единиц в другие, в этом примере меняется только формула расчета. Для примера возьмем автомат с номинальным током 20А и произведем расчет, какую мощность сети он выдержит:
  • Р = √3 х 380В х 20А = 13148 = 13,1 кВт
  • То есть, исходя из полученных данных, трехфазный автомат на 20А сможет выдержать нагрузку 13,1 КВт.

Пример 4 – обратный перевод в трехфазной сети

Когда мы знаем мощность прибора, подключенного к трехфазной сети, то вычислить оптимальный ток для автомата не составит особого труда. Возьмем прибор на 13кВт, что в ваттах составит 13000 Вт.

Сила тока составит I = 13000: (√3 х 380) = 20А

Получается, что для подключения такого трехфазного прибора нужен автомат не менее 20А.

Вывод

Если вернуться к однофазной сети на 220В, то существует правило, что 1 кВт равен 4,54А, то есть 1А = 0,22кВт или 220В.

Как видно из приведенных формул и вычислений, везде при расчетах используется закон Ома, где сила электротока является обратной сопротивлению.

Зная теперь все необходимые для расчетов формулы, вы самостоятельно можете произвести необходимые действия, чтобы выбрать нужное для подключения автоматическое реле, которое можно включить в электрическую сеть с гарантией того, что все приборы, подключенные к ней, будут в безопасности.

Онлайн расчет характеристик трехфазных электродвигателей

Содержание:

1. Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Расчет мощности трехфазного электродвигателя

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

  • Расчет мощности двигателя производится по следующей формуле:
  • P=√3UIcosφη
  • где:
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

2. Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет тока трехфазного электродвигателя

  1. Расчет номинального тока двигателя производится по следующей формуле:
  2. Iном=P/√3Ucosφη
  3. где:
  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
  • Расчет пускового тока электродвигателя производится по формуле:
  • Iпуск=Iном*K
  • где:
  • К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

3. Расчет коэффициента мощности электродвигателя

Онлайн расчет коэффициента мощности (cosφ) электродвигателя

Расчет коэффициента мощности трехфазного электродвигателя

  1. Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
  2. cosφ=P/√3UIη
  3. где:
  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

4. Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет КПД трехфазного электродвигателя

  • Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:
  • η=P/√3UIcosφ
  • где:
  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателя либо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствииопределяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Оказались ли полезны для Вас данные онлайн калькуляторы? Или может быть у Вас остались вопросыНапишите нам в х!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Редукторы, мотор-редукторы: ООО "Приводные технологии"

Приводные Технологии — развивающаяся компания малого бизнеса, основным видом деятельности которой является производство, маркетинг и промоушинг, бытовой и промышленной, доступной и надежной приводной техники. Интеграция новейших технологий современного редукторостроения к отечественным условиям производства, — особенность наших технических решений, предлагаемых рынку.

Современные запросы приводов стали более требовательны к механической передаточной части, к подводимому электрическому оборудованию, к последующим приводным муфтам и др.

Наши предложения редукторных мини-моторов, редукторных узлов и силовых передаточных машин предназначены для эксплуатации в разных отраслях, для достижения различных целей, с любым набором требований и т.д.

Помимо всего этого, имеется широкий выбор электрических устройств для оперативного контроля и регулирования режимов работы привода, — так называемая, область приводной электроники. подробнее

новое на сайте
Мини электропривод 6IK160R (160 Ватт) с регулируемой скоростью Номинальная мощность — 0,16 кВтВыходные обороты: 0,6 об/мин ~ 1400 об/мин Мини электропривод с регулируемой скоростью 6 IK160R предлагается в вариантах: 1) либо однофазным асинхронным электродвигателем переменного тока с контроллером скорости 6IK160R-C1(C2)-A1(A2)/DS(US)52-160 2) либо мотор-редуктором (в составе с …
Мини электропривод 6IK140R (140 Ватт) с регулируемой скоростью Номинальная мощность — 0,14 кВтВыходные обороты: 0,6 об/мин ~ 1400 об/мин Мини электропривод 6 IK140R (140 Ватт) с регулируемой скоростью: предлагается в вариантах 1) либо с однофазным асинхронным электродвигателем переменного тока с контроллером скорости 6IK140R-C1(C2)-A1(A2)/DS(US)52-140 2) либо мотор-редуктор (в с …
Мини мотор редуктор 6GU150 … 300 (140 Ватт) Номинальная мощность — 0,14 кВтВыходные обороты: 5 об/мин … 10 об/мин Мини мотор редуктор 6GU150 … 300 (140 Ватт) с подводимой мощностью 140 Вт — компактный универсальный мотор-редуктор с передаточными числами: i=150, i=180, i=200, i=250, i=300, результативно получаемые обороты выходного вала: 5 об/мин … 10 …
Мини мотор редуктор 6GU150 … 300 Номинальная мощность — 0,16 кВтВыходные обороты: 5 об/мин … 12,5 об/мин Миниатюрный мотор-редуктор 6GU150 … 300 (160 Ватт) с силовой установкой 0.16 кВт. Модель предлагает относительно большие передаточные числа в довольно сжатом объеме. Электрические параметры электродвигателей агрегатируемых с редуктором найдете …
Читайте также:  Автоподогрев двигателя своими руками

Расчет силы тока по мощности – Калькулятор + формулы

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома.

Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок.

Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Формулы расчета силы тока

Электрический ток — это направленное упорядоченное движение заряженных частиц.Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).

— Сила тока через мощность и напряжение (постоянный ток): I = P / U— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)— Сила тока через мощность и сопротивление: I = √(P / R)— Сила тока через напряжение и сопротивление: I = U / R

  • P – мощность, Вт;
  • U – напряжение, В;
  • R – сопротивление, Ом;
  • cos φ – коэффициент мощности.

Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.

Расчет потребляемой мощности двигателя

В этой статье мы разберем, что такое мощность трехфазного асинхронного двигателя и как ее рассчитать.

Понятие мощности электродвигателя

Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

Электрическая (потребляемая) мощность двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:

Р2 = Р1 · ƞ

КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности.

Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S (с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ).

С её учетом формула номинальной мощности двигателя выглядит так:

Р2 = Р1 · ƞ = S · ƞ · cosϕ

Мощность и нагрев двигателя

Номинальная мощность обычно указывается для температуры окружающей среды 40°С и ограничена предельной температурой нагрева.

Поскольку самым слабым местом в двигателе с точки зрения перегрева является изоляция, мощность ограничивается классом изоляции обмотки статора.

Например, для наиболее распространенного класса изоляции F допустимый нагрев составляет 155°С при температуре окружающей среды 40°С.

В документации на электродвигатели приводятся данные, из которых видно, что номинальная мощность двигателя падает при повышении температуры окружающей среды. С другой стороны, при должном охлаждении двигатели могут длительное время работать на мощности выше номинала.

Мы рассмотрели потребляемую и отдаваемую мощности, но следует сказать, что реальная рабочая потребляемая мощность P (мощность на валу двигателя в данный момент) всегда должна быть меньше номинальной:

Р < Р2 < Р1 < S

Это необходимо для предотвращения перегрева двигателя и наличия запаса по перегрузке. Кратковременные перегрузки допустимы, но они ограничены прежде всего нагревом двигателя. Защиту двигателя по перегрузке также желательно устанавливать не по номинальному току (который прямо пропорционален мощности), а исходя из реального рабочего тока.

Современные производители в основном выпускают двигатели из ряда номиналов: 1,5, 2,2, 5,5, 7,5, 11, 15, 18,5, 22 кВт и т.д.

Расчет мощности двигателя на основе измерений

На практике мощность двигателя можно рассчитать, прежде всего, исходя из рабочего тока. Ток измеряется токовыми клещами в максимальном рабочем режиме, когда рабочая мощность приближается к номинальной. При этом температура корпуса двигателя может превышать 100 °С, в зависимости от класса нагревостойкости изоляции.

Измеренный ток подставляем в формулу для расчета реальной механической мощности на валу:

Р = 1,73 · U · I · cosϕ · ƞ, где

  • U – напряжение питания (380 или 220 В, в зависимости от схемы подключения – «звезда» или «треугольник»),
  • I – измеренный ток,
  • cosϕ и ƞ – коэффициент мощности и КПД, значения которых можно принять равными 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью более 15 кВт.
  • Если нужно найти номинальную мощность двигателя, то полученный результат округляем в бОльшую сторону до ближайшего значения из ряда номиналов.
  • Р2 > Р
  • Если необходимо рассчитать потребляемую активную мощность, используем следующую формулу:
  • Р1 = 1,73 · U · I · ƞ

Именно активную мощность измеряют счетчики электроэнергии. В промышленности для измерения реактивной (и полной мощности S) применяют дополнительное оборудование. При данном способе можно не использовать приведенную формулу, а поступить проще – если двигатель подключен в «звезду», измеренное значение тока умножаем на 2 и получаем приблизительную мощность в кВт.

Расчет мощности при помощи счетчика электроэнергии

Этот способ прост и не требует дополнительных инструментов и знаний. Достаточно подключить двигатель через счетчик (трехфазный узел учета) и узнать разницу показаний за строго определенное время.

Например, при работе двигателя в течении часа разница показаний счетчика будет численно равна активной мощности двигателя (Р1).

Но чтобы получить номинальную мощность Р2, нужно воспользоваться приведенной выше формулой.

Другие полезные материалы: Степени защиты IP Трехфазный двигатель в однофазной сети Типичные неисправности электродвигателей

Ссылка на основную публикацию
Adblock
detector