Асинхронный двигатель типы по оборотам

Асинхронный двигатель типы по оборотам В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты. Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные) По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Асинхронный двигатель типы по оборотам Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Асинхронный двигатель типы по оборотам

Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Асинхронный двигатель типы по оборотам По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).

Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный двигатель типы по оборотам

Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве: Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Асинхронный двигатель типы по оборотам Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Асинхронный двигатель типы по оборотам Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Асинхронный двигатель типы по оборотам Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Асинхронный двигатель типы по оборотам Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Асинхронный двигатель типы по оборотам Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков,  шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Типы асинхронных двигателей, разновидности, какие бывают двигатели

Электродвигатели переменного тока, использующие для своей работы вращающееся магнитное поле статора, являются в настоящее время весьма распространенными электрическими машинами. Те из них, у которых частота вращения ротора отличается от частоты вращения магнитного поля статора, называются асинхронными двигателями.

Асинхронный двигатель типы по оборотам

В связи с большими мощностями энергетических систем и большой протяженностью электрических сетей энергоснабжение потребителей всегда осуществляется на переменном токе. Поэтому естественно стремление к максимальному использованию электрических двигателей переменного тока. Это, казалось бы, освобождает от необходимости многократного преобразования энергии.

К сожалению, двигатели переменного тока по своим свойствам, и прежде всего по управляемости, существенно уступают двигателям постоянного тока, поэтому они используются преимущественно в установках, где не требуется регулирование скорости.

Относительно недавно начали активно использоваться регулируемые системы переменного тока с подключением электродвигателей переменного тока через частотные преобразователи. 

Асинхронный электродвигатель с короткозамкнутым ротором представляет собой вращающийся трансформатор, первичная обмотка которого — это статор, а вторичная — ротор. Между статором и ротором находится воздушный зазор. Как и в любом реальном трансформаторе, каждая обмотка имеет также и собственное активное сопротивление.

При подключении двигателя в электрическую сеть в статоре возникает магнитное поле, которое вращается синхронно с частотой питающей сети. За счет явления электромагнитной индукции под действием магнитного поля статора в электрически замкнутых обмотках ротора возникает электрический ток.

Наведенный электрический ток ротора создаст собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате ротор начинает вращаться, и на валу двигателя возникает механический момент, пропорциональный току статора.

Асинхронный двигатель типы по оборотам

Модель трехфазного асинхронного двигателя в разрезе 

Характерной особенностью асинхронного двигателя является то, что за счет взаимодействия полей статора и ротора скорость вращения вала двигателя несколько меньше, чем частота питающей сети. Разность между частотой питающей сети и скоростью вращения называют скольжением.

Очень широко применяются в различных отраслях хозяйства и производства асинхронные двигатели в силу простоты их изготовления и высокой надежности. Между тем, можно выделить четыре основных типа асинхронных двигателей:

  • однофазный асинхронный двигатель с короткозамкнутым ротором;
  • двухфазный асинхронный двигатель с короткозамкнутым ротором;
  • трехфазный асинхронный двигатель с короткозамкнутым ротором;
  • трехфазный асинхронный двигатель с фазным ротором.

Асинхронный двигатель типы по оборотам

Однофазный асинхронный двигатель содержит на статоре лишь одну рабочую обмотку, на которую в процессе работы двигателя подается переменный ток.

Читайте также:  Ваз 11113 двигатель не заводится

Но для пуска двигателя на его статоре есть и дополнительная обмотка, которая кратковременно подключается к сети через конденсатор или индуктивность, либо замыкается накоротко.

Это необходимо для создания начального сдвига фаз, чтобы ротор начал вращаться, иначе пульсирующее магнитное поле статора не столкнуло бы ротор с места.

Ротор такого двигателя, как и любого другого асинхронного двигателя с короткозамкнутым ротором, представляет собой цилиндрический сердечник с залитыми алюминием пазами, с одновременно отлитыми вентиляционными лопастями. Такой ротор, типа «беличья клетка» и называется короткозамкнутым ротором. Однофазные двигатели применяются в маломощных приборах, таких как комнатные вентиляторы или небольшие насосы.

Асинхронный двигатель типы по оборотам

Двухфазные асинхронные двигатели наиболее эффективны при работе от однофазной сети переменного тока. Они содержат на статоре две рабочие обмотки, расположенные перпендикулярно, причем одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так получается вращающееся магнитное поле, а без конденсатора ротор бы сам не сдвинулся с места.

Эти двигатели также имеют короткозамкнутый ротор, а их применение гораздо шире, чем у однофазных. Здесь уже и стиральные машины, и различные станки. Двухфазные двигатели для питания от однофазных сетей называют конденсаторными двигателями, так как фазосдвигающий конденсатор является зачастую неотъемлемой их частью.

Асинхронный двигатель типы по оборотам

Трехфазный асинхронный двигатель содержит на статоре три рабочие обмотки, сдвинутые относительно друг друга так, что при включении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве относительно друг друга на 120 градусов. При подключении трехфазного двигателя к трехфазной сети переменного тока, возникает вращающееся магнитное поле, приводящее в движение короткозамкнутый ротор.

Асинхронный двигатель типы по оборотам

Обмотки статора трехфазного двигателя можно соединить по схеме «звезда» или «треугольник», причем для питания двигателя по схеме «звезда» требуется напряжение выше, чем для схемы «треугольник», и на двигателе, поэтому, указываются два напряжения, например: 127/220 или 220/380. Трехфазные двигатели незаменимы для приведения в действие различных станков, лебедок, циркулярных пил, подъемных кранов, и т.д.

Асинхронный двигатель типы по оборотам

Трехфазный асинхронный двигатель с фазным ротором имеет статор аналогичный описанным выше типам двигателей, — шихтованный магнитопровод с тремя уложенными в его пазы обмотками, однако в фазный ротор не залиты алюминиевые стержни, а уложена уже полноценная трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически изолированных от него.

Асинхронный двигатель типы по оборотам

1 — кожух с жалюзями, 2 — щетки, 3 — щеточная траверса со щеткодержателями, 4 — палец крепления щеточных траверс, 5 — выводы от щеток, 6 — колодка, 7 — изоляционная втулка, 8 — контактные кольца, 9 — наружная крышка подшипника, 10 — шпилька крепления коробки и крышек подшипника, 11 — задний подшипниковый щит, 12 — обмотка ротора, 13 — обмоткодержатель, 14 — сердечник ротора, 15 — обмотка ротора, 16 — передний подшипниковый щит, 7 — наружная крышка подшипника, 18 — вентиляционные отверстия, 19 — станина, 20 — сердечник статора, 21 — шпильки внутренней крышки подшипника, 22 — бандаж, 23 — внутренняя крышка подшипника, 21 — подшипник, 25 — вал, 26 — контактные кольца, 27 — выводы обмотки ротора

Посредством щеток, на кольца также подается трехфазное переменное напряжение, и подключение может быть осуществлено как напрямую, так и через реостаты.

Безусловно, двигатели с фазным ротором стоят дороже, но их пусковой момент под нагрузкой значительно выше, чем у типов двигателей с короткозамкнутым ротором.

Именно в силу повышенной мощности и большого пускового момента, этот тип двигателей нашел применение в приводах лифтов и подъемных кранов, то есть там, где устройство запускается под нагрузкой, а не вхолостую.

Подробнее про этот тип двигателей читайте здесь: Асинхронные электродвигатели с фазным ротором

Что представляют собой рабочие характеристики асинхронных моторов?

Асинхронные электродвигатели представляют собой полноценные системы, качество работы которых определяется техническими характеристиками. Для чего они нужны и каким образом измеряются и изменяются, мы опишем далее. Параметры двигателя – первое, что необходимо знать перед началом его эксплуатации. 

Асинхронный двигатель типы по оборотам

Для того, чтобы обеспечить нормальную слаженную работу асинхронных силовых агрегатов, необходимо знать все об этих моторах, в частности, их рабочие и механические характеристики.

Это необходимо, как при покупке компонентов в магазине, так при реализации их своими руками.

Также, при помощи правильного регулирования этих показателей, вы сможете успешно управлять работой двигателя, обеспечивая не только высокую продуктивность, но и снижение энергозатрат. 

Общие параметры

По умолчанию, стандартная машина асинхронного типа (без доработок и модификаций) включает 2 основных компонента: 

  • статор – неподвижную деталь;
  • ротор – деталь, поддающаяся вращениям. 

В трехфазных моделях 3 отдельные фазы представляют собой статорную обмотку. С1, С2, С3 на рисунке – это их начало, а С3, С4, С5 – концы. Абсолютно все они подключаются к клеммным разъемам, с использованием одной из двух схем: «звезда» или «треугольник». На изображении их можно видеть под вариантам Б и В. 

Асинхронный двигатель типы по оборотамСхема устройства асинхронного мотора

Конкретная схема для построения, выбирается с учетом паспортных данных электродвигателя и показателей сетевого напряжения, от которого будет производиться питания. 

Основная задача статора – создание магнитного поля внутри мотора, которое бесперебойно вращается. Ротор же бывает двух видов – фазный и короткозамкнутый. Последний имеет скорость оборотов, которая не поддается регулированию.

Применение такого компонента в силовом агрегате делает конструкцию проще и дешевле. Момент запуска у таких устройств, правда, низкий, чего не скажешь о моторах с ротором фазным.

У него скорость вращения управляется при помощи ввода вспомогательного сопротивления.  

Принцип действия мотора

Первое, что осуществляется – на статорную обмотку подается электрическое напряжение. По каждой отдельной фазе можно видеть постоянно меняющиеся магнитные потоки, смещенные по отношению друг к другу на угол 120 градусов. В результате получается общий результирующий поток, который также вращаемый, а с его помощью создается электродвижущая сила внутри роторных проводников. 

Именно так в результате получается ток, который совмещается с потоком результирующим, что создает момент пуска. А он в свою очередь приводит ротор в движение. 

Это общее, упрощенное описание принципа действия силового агрегата с разными скоростями оборотов. Для того, чтобы рассмотреть работу мотора, стоит углубиться в механические и рабочие характеристики, точно влияющие на вышеописанный алгоритм срабатывания. 

Механическая характеристика

Суть данного параметра состоит в прямой зависимости частоты оборотов ротора от показателей нагрузки. То есть, от момента вращения на валу. Когда нагрузка находится на номинальном уровне, то частота вращений для разнотипных моторов варьируется в диапазоне от 92,5 до 98% от частоты оборотов n1. Скольжение (Sном) при этом не превышает уровень в 2 – 7,5%. 

Асинхронный двигатель типы по оборотамМеханическая характеристика

Чем выше уровень нагрузки, с которой работает мотор, тем ниже частота оборотов электрического мотора. Частота оборотов асинхронного двигателя несущественно снижается при усилении нагрузки в пределах от нуля до максимального значения. Визуально это можно видеть выше, на рисунке А. из этого следует, что электрический агрегат относится к моторам с жесткой механической характеристикой. 

М макс., то есть наибольший крутящий момент, агрегат развивает, когда имеется определенное скольжение (Skp), который находится на уровне от 10 до 20 процентов. Соотношение величин Ммакс и Мном указывает на перегрузочную способность мотора. Отношение же Мп к М номинальному, указывает на пусковые качества электродвигателя. 

Электрический мотор способен стойко и бесперебойно работать при условии обеспечения самостоятельного регулирования, когда будет автоматически установлено равновесие между моментом нагрузки, нацеленным на вал (Мвн) и М моментом, который развивает непосредственно двигатель. Это условие отлично отображается на верхней части характеристики, при достижении максимального показателя М.  Другими словами — до уровня точки В. 

В ситуациях, когда момент нагрузки М превышает показатель М макс., то мотор имеет сниженную устойчивость и останавливается. Параллельно с этим по машинным обмоткам будет довольно долго подаваться ток в несколько раз выше номинального, что может привести к перегоранию. Температура деталей растет, из-за превышенного электричества. 

При подключении в электрическую цепь роторных обмоток от пускового реостата, на выходе мы получим полный набор механических характеристик.

Первый параметр при эксплуатации мотора без стартового реостата, называют естественной характеристикой.

Второй, третий и четвертый показатель, которые получаются при подсоединении к роторной обмотке двигателя реостата, обладают сопротивлениями R1п (2п и 3п соответственно), относятся к механическим характеристикам реостатного типа.

Когда же проводится запуск пускового реостата, механическую характеристику называют мягкой или крутопадающей.

Это обусловливается тем, что существенно возрастает показатель активного сопротивления роторной цепи R2 и увеличивается Sкр. Параллельно с этим снижается ток запуска. Данная величина (Мп) также регулируется R2.

Читайте также:  Все системы двигателя и принцип работы

При этом, существует возможность подобрать реостат с определенным сопротивлением, для того, чтобы момент пуска (Мп) равнялся максимальному М.  

Электромеханическая характеристика 

Показатель является зависимостью угловой скорости оборотов от статорного тока. При использовании сразу нескольких опорных точек можно создать такую характеристику. Для этого проводят расчет таких величин:

Асинхронный двигатель типы по оборотам Асинхронный двигатель типы по оборотам

  • уровень тока в начальные моменты старта.

Асинхронный двигатель типы по оборотам

Все эти значения максимально точно отображают электромеханическую характеристику. 

Рабочие характеристики

Данные параметры указывают на зависимости от полезной мощности Р2 = Р макс. таких показателей:

  • частот вращений (n) или скольжения (S);
  • валового момента (М2);
  • статорного тока I1 ;
  • КПД (коэффициента полезного действия).

Асинхронный двигатель типы по оборотам

При этом значения частоты f1 и напряжения U1 должны быть на номинальных уровнях. Они реализуются для областей устойчивого срабатывания мотора. Это означает, что диапазон должен быть от нулевого скольжения до того, которое превышает номинальное на 10 – 20%.  

Частота оборотов при растущей отдаваемой мощности мало поддается изменениям. Это уже можно было видеть в механической характеристике, тогда, когда валовый момент М2 пропорциональный показателю мощности Р2. Крутящий момент ниже, чем электромагнитный момент, разница представляет собой значение момента торможения Мтр, который генерируется силами трения. 

Статорный ток I1 увеличивается вместе с отдаваемой мощностью, но, когда показатель Р2 равен нулю, присутствует определенный ток для работы на холостых оборотах – I0. Уровень КПД также снижается, практически идентично, как у трансформатора, сохраняя довольно-таки высокое значение, в относительно широком спектре нагрузок.  

Наибольший коэффициент полезного действия для асинхронных силовых агрегатов со средними и большими мощностями, варьируется в пределах 0,75 – 0,95. Чем выше мощность машины, тем больше у нее КПД. 

Мощностной коэффициент косинус ϕ1 у асинхронных моторов аналогичных характеристик при наличие максимальной нагрузки составляет 0,7 – 0,9. 

Исходя из этого, можно видеть, что силовые агрегаты перегружают электрические подстанции и сети питания своими довольно внушительными токами, которые могут достигать от 40 до 70% от номинальных токов. Это – один из самых весомых недостатков установок такого типа. 

Если же моторные нагрузки на порядок меньше, например 25 – 50% от рабочих, то мощностной коэффициент падает до недостаточных значений – 0,5 – 0,75.

Когда осуществляется снятие нагрузки с мотора, коэффициент мощности уменьшается еще и новые показатели составляют 0,25 – 0,3.

Именно  поэтому нельзя допускать, чтобы асинхронный двигатель функционировал длительное время на холостых оборотах, а также при существенных недогрузках.  

Работа на пониженных напряжениях или с обрывами фаз

Сниженное напряжение в питающей сети существенно не влияет на показатели частоты оборотов роторных элементов асинхронного мотора.

При этом также уменьшается показатель наивысшего крутящего момента, который позволяет развить ресурс мотора. К примеру, когда происходит понижение на 30%, момент вращения сокращается приблизительно в два раза.

Это обусловливает то, что когда напряжение падает несущественно, мотор может остановиться, а при низком – не запуститься. 

На эквивалентное последовательное сопротивление (Э.П.С) переменного тока питания при снижении напряжения в сети контактного типа параллельно снижается уровень напряжении в сетях с тремя фазами.

От таких источников питаются двигатели асинхронного типа, которые приводят в движение вспомогательные компоненты производственного оборудования: гидравлические и пневматические насосы, компрессорные установки, вентиляторы и др. 

Для обеспечения нормальной работы моторов на пониженных уровнях напряжения (их рабочий процесс должен осуществляться без сбоев при падении напряжения до 0,75 U ном), величины мощности должны быть с определенными показателями. Эти данные сводятся к тому, что мощности всех вспомогательных компонентов на Э.П.С берутся с показателями, приблизительно в полтора раза большими, чем требуется для приведения их в действие с номинальным напряжением.  

Такой высокий запас ресурса необходим через наличие несимметрии напряжений фазного типа. Это обусловливается тем, что на последовательном сопротивлении, двигатели питаются от фазного расцепителя, а не от генератора на 3 фазы. 

Асимметричность напряжений обусловливает различия в напряжениях фазовых токов, а также сдвиги между ним, которые не будут иметь углы в 120 градусов.

Такое явление обусловливает то, что по одной фазе будет подаваться ток с более высокими показателями, что вызовет нагрев намоток этой же фазы.

Чтобы этого не возникало, необходимо ограничивать нагрузку на мотор, сравнительно с его работой при напряжениях симметричного типа. 

Асинхронный двигатель типы по оборотам

Обрывы фаз также имеют место в работе асинхронного двигателя. При возникновении такой ситуации мотор работает и дальше, но, при этом, по целым фазам будут идти токи на повышенных уровнях.

Это в свою очередь также вызовет нагрев катушек, из-за чего функционирование в таких режимах не допускается.

Запуск агрегата с поврежденными обмотками невозможен, что обусловливается недостаточным магнитным полем, которое не приведет в движение ротор. 

Когда в контактной части количество оборотов уменьшается то, как правило – подача вспомогательного оборудования остается неизменной. В моторах постоянного тока, частоты оборотов прямо пропорциональны напряжению питания, исходя из этого, подача машин меняется.

Трехфазный асинхронный двигатель

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

Асинхронный двигатель типы по оборотам

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Асинхронный двигатель типы по оборотам Асинхронный двигатель типы по оборотам Асинхронный двигатель типы по оборотам Магнитное поле создаваемое трехфазным током в разный момент времени Асинхронный двигатель типы по оборотам Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике.

В свою очередь ЭДС вызовет ток в проводнике.

Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Асинхронный двигатель типы по оборотам Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Асинхронный двигатель типы по оборотам Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Читайте также:  Включить зажигание on двигатель не заводиться

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Асинхронный электродвигатель — устройство, принцип работы, виды асинхронных двигателей

Данный двигатель зачастую используется в промышленности. Он простой в использовании, долговечный, недорогой.

Асинхронный двигатель типы по оборотам

Асинхронный двигатель превращает электрическую энергию в механическую. Его работа основана на принципе вращающегося магнитного поля. Сам принцип действия аппарата можно описать несколькими пунктами поэтапно:

  1. Во время запуска самого двигателя происходит пересечение магнитного поля с контуром ротора, после чего происходит индицирование электродвижущей силы.
  2. В замкнутом роторе происходит возникновение переменного тока.
  3. Магнитные поля: статора и ротора также воссоздают непосредственно так называемый крутящий момент.
  4. Ротор «догоняет» поле самого статора.
  5. Когда частоты вращения самого магнитного поля статора/ротора имеют совпадения, электромагнитные процессы, образованные в месте ротора затухают. После чего крутящий момент приравнивается к «0».
  6. Статор, а вернее его образованное магнитное поле возбуждает контур ротора, который в этот момент вновь позади.

Где применяются?

Как уже уточнялось выше в статье, применяется данный двигатель промышленности (лебедки общепромышленного назначения, краны) и бытовой технике (асинхронные двигатели с небольшой мощностью).

Теперь остановим ваше внимание на электродвигателе непосредственно с короткозамкнутым ротором. Они применяются в самих электроприводах различных типов станков, а если говорить точнее: металлообрабатывающих, а также часто встречающихся на сегодня грузоподъемных и ткацких, в том числе деревообрабатывающих), а также в вентиляторах, лифтах, различных насосах, бытовых приборах.

Если говорить об асинхронном электродвигателе с короткозамкнутым ротором, то благодаря его применению можно добиться существенного снижения энергопотребления оборудования, которое в свою очередь, обеспечивает высокий уровень надежности аппарата. Данные характеристики оказывают положительный эффект на модернизацию производства в целом.

Что такое «скольжение»?

Пришло время поговорить о таком понятии как «скольжение» асинхронного двигателя. Это, по сути, относительная разность скоростей самого вращения «ротора», это ни что иное, как изменение, так называемого переменного магнитного тока. «Скольжение» измеряется в относительных единицах, а также можно измерять в процентном соотношении.

Будет интересно➡  Однофазные асинхронные двигатели на службе человечества

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов. Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Асинхронный двигатель типы по оборотам Из чего состоит асинхронный электродвигатель

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Двигатели статора имеют фазные и короткозамкнутые роторы.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров.

    Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.

  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки. В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Будет интересно➡  Все что нужно знать о шаговых электродвигателях

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Что лучше короткозамкнутый или фазный: совместная работа ротора и статора

Здесь стоит отметить, что особенных преимуществ нет ни у одного ротора, каждый хорош по-своему.

Более подробно на них останавливаться не будем, так как вся необходимая информация по этим двум разновидностям ротора уже была дана выше в статье.

остановим внимание на том, как регулируется частота вращения ротора. Это можно сделать при помощи изменения так называемого дополнительного сопротивления самой цепи ротора.

Также можно регулировать частоту вращения ротора, изменив напряжение статора, который подведен к обмотке.

Можно также изменить частоту питающего напряжения или же переключить число пар полюсов, ввести резисторы в цепь ротора.

Классификация по типу ротора

Классификация по типу ротора следующая: однофазный асинхронный двигатель с короткозамкнутым ротором, а также есть такая разновидность ротора, как двухфазный асинхронный двигатель короткозамкнутый.

Плюс ко всему сегодня часто пользуется спросом и асинхронный двигатель с короткозамкнутым ротором с тремя фазами, а также асинхронный двигатель с фазным ротором, также с тремя фазами. Именно так и делится классификация ротора по числу фаз.

Будет интересно➡  Что такое трехфазный двигатель и как он работает

Линейные моторы

В линейных двигателях перемещение рабочего органа РО (коротких подач) происходит от самого двигателя через ременную передачу строго на винт (ходовой).

Шариковая гайка скреплена с короткой передачей пружинных механизмов защиты от соударений, именно через нее происходит вращение винта и происходит трансформация в продольное перемещение РО.

Подключение двигателя к питанию

Кнопки “Стоп” должны быть подключены в последовательности друг с другом, а в свою очередь кнопки “Пуск” должны строго настрого быть подключены в параллели между собой в цепи управления.

Во время нажатия на “Пуск” цепь катушки будет замкнута, а сама катушка начинает втягиваться, а во время размыкания кнопки, напряжение питающее катушку, пойдет через блок-контакт КМ. Прервать цепь управления можно при помощи нажатия на одну из кнопок “Стоп”.

Достоинства и недостатки асинхронных двигателей

Асинхронный двигатель типы по оборотам Какие недостатки и достоинства у асинхронных электродвигателей

Достоинства:

  • прежде всего, их легко использовать и никаких сложностей при эксплуатации не возникает
  • конструкция двигателей очень простая и это еще одно их преимущество, а также нельзя не отметить их низкую себестоимость (порой это имеет большое значение для покупателей, так что это еще один плюс таких двигателей)
  • надежность

Недостатки:

  • модели оснащены маленьким пусковым механизмом
  • выдают высокой спусковой ток
  • очень сильно чувствительны к возможной смене параметров в сети
  • для плавного регулирования скорости нужен преобразователь вероятных частот

Несмотря на то, что есть свои недостатки эти асинхронные двигатели, пользуются огромной популярностью. Так что все-таки они заслуживают должного уважения и не зря их часто используют в промышленности.

Заключение

Ссылка на основную публикацию
Adblock
detector