В чем особенность режима пуска синхронного двигателя

Для обеспечения работы мощных электроприводов применяются синхронные электродвигатели. Они нашли применение в компрессорных установках, насосах, в системах, прокатных станах, вентиляторах.

 Применяются в металлургической, цементной, нефтегазовой и других отраслях промышленности, где необходимо использовать оборудование большой мощности.

В этой статье мы решили рассказать читателям сайта Сам Электрик, как может выполняться пуск синхронных двигателей.

Преимущества и недостатки

Конструктивно синхронные двигатели сложнее асинхронных, но они имеют ряд преимуществ:

  • Работа синхронных электродвигателей в меньшей степени зависит от колебания напряжения питающей сети.
  • По сравнению с асинхронными, они имеют больший КПД и лучшие механические характеристики при меньших габаритах.
  • Скорость вращения не зависит от нагрузки. То есть колебания нагрузки в рабочем диапазоне не влияют на обороты.
  • Могут работать со значительными перегрузками на валу. Если возникают кратковременные пиковые перегрузки, повышением тока в обмотке возбуждения компенсируют эти перегрузки.
  • При оптимально подобранном режиме тока возбуждения, электродвигатели не потребляют и не отдают в сеть реактивную энергию, т.е. cosϕ равен единице. Двигатели, работая с перевозбуждением, способны вырабатывать реактивную энергию. Что позволяет их использовать не только в качестве двигателей, но и компенсаторов. Если необходима выработка реактивной энергии, на обмотку возбуждения подается повышенное напряжение.

При всех положительных качествах синхронных электродвигателей у них имеется существенный недостаток – сложность пуска в работу. Они не имеют пускового момента. Для запуска требуется специальное оборудование. Это долгое время ограничивало использование таких двигателей.

Способы пуска

Пуск синхронных электродвигателей можно осуществить тремя способами – с помощью дополнительного двигателя, асинхронный и частотный запуск. При выборе способа учитывается конструкция ротора.

В чем особенность режима пуска синхронного двигателя

Он выполняется с постоянными магнитами, с электромагнитным возбуждением или комбинированным. Наряду с обмоткой возбуждения на роторе смонтирована короткозамкнутая обмотка – беличья клетка. Её также называют демпфирующей обмоткой.

В чем особенность режима пуска синхронного двигателя

Запуск с помощью разгонного двигателя

Этот метод пуска редко применяется на практике, потому что его сложно реализовать технически. Требуется дополнительный электродвигатель, который механически соединен с ротором синхронного двигателя.

С помощью разгонного двигателя раскручивается ротор до значений близких к скорости вращения поля статора (к синхронной скорости). После чего на обмотку возбуждения ротора подают постоянное напряжение.

Контроль осуществляется по лампочкам, которые включены параллельно рубильнику, подающему напряжение на обмотки статора. Рубильник должен быть отключен.

В первоначальный момент лампы мигают, но при достижении номинальных оборотов они перестают гореть. В этот момент подают напряжение на обмотки статора. После чего синхронный электродвигатель может работать самостоятельно.

Затем дополнительный мотор отключается от сети, а в некоторых случаях его отсоединяют механически. В этом состоят особенности пуска с разгонным электродвигателем.

Асинхронный запуск

Метод асинхронного пуска на сегодня самый распространенный. Такой запуск стал возможен после изменения конструкции ротора.

Его преимущество в том, что не нужен дополнительный разгонный двигатель, так как дополнительно к обмотке возбуждения в ротор вмонтировали короткозамкнутые стержни беличьей клетки, что дало возможность запускать его в асинхронном режиме. При таком условии этот способ пуска и получили широкое распространение.

Сразу же рекомендуем просмотреть видео по теме:

При подаче напряжения на обмотку статора происходит разгон двигателя в асинхронном режиме. После достижения оборотов близких к номинальным, включается обмотка возбуждения.

Электрическая машина входит в режим синхронизма. Но не все так просто. Во время пуска в обмотке возбуждения возникает напряжение, которое возрастает с ростом оборотов. Оно создает магнитный поток, который воздействует на токи статора.

При этом возникает тормозящий момент, который может приостановить разгон ротора. Для уменьшения вредного воздействия обмотки возбуждения подключают к разрядному или компенсационному резистору.

На практике эти резисторы представляют собой большие тяжелые ящики, где в качестве резистивного элемента используются стальные спирали. Если этого не сделать, то из-за возрастающего напряжения может произойти пробой изоляции.

Что повлечет выход оборудования из строя.

После достижения подсинхронной частоты вращения, от обмотки возбуждения отключаются резисторы, и на нее подается постоянное напряжение от генератора (в системе генератор-двигатель) или от тиристорного возбудителя (такие устройства называются ВТЕ, ТВУ и так далее, в зависимости от серии). В результате чего двигатель переходит в синхронный режим.

Недостатками этого метода являются большие пусковые токи, что вызывает значительную просадку напряжения питающей сети. Это может повлечь за собой остановку других синхронных машин, работающих на этой линии, в результате срабатывания защит по низкому напряжению. Для уменьшения этого воздействия цепи обмоток статора подключают к компенсационным устройствам, которые ограничивают пусковые токи.

Это могут быть:

  1. Добавочные резисторы или реакторы, которые ограничивают пусковые токи. После разгона они шунтируются, и на обмотки статора подается сетевое напряжение.
  2. Применение автотрансформаторов. С их помощью происходит понижение входного напряжения. При достижении скорости вращения 95-97% от рабочей, происходит переключение. Автотрансформаторы отключаются, а на обмотки подается напряжение сети переменного тока. В результате электродвигатель входит в режим синхронизации. Этот метод технически более сложный и дорогостоящий. А автотрансформаторы часто выходят из строя. Поэтому на практике этот метод редко применяют.

Частотный пуск

Частотный пуск синхронных двигателей применяется для запуска устройств большой мощности (от 1 до 10 МВт) с рабочим напряжением 6, 10 Кв, как в режиме легкого запуска (с вентиляторным характером нагрузки), так и с тяжелым пуском (приводов шаровых мельниц). Для этих целей выпускаются устройства мягкого частотного пуска.

Принцип работы аналогичен высоковольтным и низковольтным устройствам, работающим по схеме преобразователя частоты.

Они обеспечивают пусковой момент до 100% от номинала, а также обеспечивают запуск нескольких двигателей от одного устройства.

Пример схемы с устройством плавного пуска вы видите ниже, оно включается на время запуска двигателя, а затем выводится из схемы, после чего двигатель включается в сеть напрямую.

В чем особенность режима пуска синхронного двигателя

Системы возбуждения

До недавнего времени, для возбуждения применялся генератор независимого возбуждения. Он располагался на одном валу с синхронным электродвигателем. Такая схема еще применяется на некоторых предприятиях, но она устарела и теперь не применяется. Сейчас для регулировки возбуждения используются тиристорные возбудители ВТЕ.

Они обеспечивают:

  • оптимальный режим пуска синхронного двигателя;
  • поддержание заданного тока возбуждения в заданных пределах;
  • автоматическое регулирование напряжения возбуждения в зависимости от нагрузки;
  • ограничение максимального и минимального тока возбуждения;
  • мгновенное увеличение тока возбуждения при понижении питающего напряжения;
  • гашение поля ротора при отключении от питающей сети;
  • контроль состояния изоляции, с оповещением о неисправности;
  • обеспечивают проверку состояния обмотки возбуждения при неработающем электродвигателе;
  • работают с высоковольтным преобразователем частоты, обеспечивая асинхронный и синхронный запуск.

Эти устройства отличаются высокой надежностью. Основным недостатком является высокая цена.

В заключение отметим, что самый распространенный способ пуска синхронных двигателей — это асинхронный запуск. Практически не нашел применения пуск с помощью дополнительного электродвигателя. В то же время частотный запуск, который позволяет в автоматическом режиме решить проблемы пуска, довольно дорогостоящий.

Материалы по теме:

Пуск и регулирование частоты синхронных двигателей

Синхронный двигатель не имеет начального пускового момента.

Если его подключить к сети переменного тока, когда ротор неподвижен, а по обмотке возбуждения проходит постоянный ток, то за один период изменения тока, электромагнитный момент будет дважды изменять свое направление.

Ротор обладает инерцией и не может быть в течение одного полупериода разогнан до синхронной частоты вращения. Следовательно, для пуска синхронного двигателя необходимо разогнать его ротор с помощью внешнего момента до частоты вращения, близкой к синхронной.

Для пуска могут быть используются следующие способы:

1. Асинхронный пуск.

2. Пуск с помощью разгонного двигателя.

3. Частотный пуск.

При пуске с помощью разгонного двигателя обмотка статора отключена от сети, а на обмотку возбуждения подается напряжение постоянного тока. Специальный разгонный двигатель разворачивает ротор синхронного двигателя до частоты вращения близкой к синхронной. Затем обмотка статора включается в сеть, а разгонный двигатель выключают.

Асинхронный пуск аналогичен пуску асинхронного двигателя. Для этого синхронный двигатель снабжают специальной коротко-замкнутой пусковой обмоткой, выполненной по типу «беличья клетка» и уложенной в полюсных наконечниках ротора.

Чтобы увеличить сопротивление стержней, клетку изготовляют из латуни.

Обмотку возбуждения предварительно замыкают на гасящий резистор, сопротивление которого в 8—12 раз превышает активное сопротивление обмотки возбуждения с целью избежать перенапряжений.

При включении трехфазной обмотки статора в сеть образуется вращающееся магнитное поле статора, которое будет пересекать пусковую обмотку и наведет в ней ЭДС и ток. Вращающееся магнитное поле статора, взаимодействуя с полем пусковой обмотки, создает электромагнитные силы F и вращающий момент.

Читайте также:  Двигатель k24 какое масло лить

Момент разгонит ротор до частоты вращения, близкой к синхронной (s Θ2, а затем под действием синхронизирующего момента начинает уменьшаться до величины Θ4 < Θ2. В результате возникают колебания нагрузочного угла вокруг установившегося значения Θ2, которые сопровождаются колебаниями частоты вращения ротора, называемые качаниями.

Если при качаниях угол Θ превысит критическое значение, то машина выпадет из синхронизма.

В чем особенность режима пуска синхронного двигателя

Собственные колебания синхронной машины называются свободными колебаниями. Частота собственных колебаний синхронных машин невелика (0,5- 2,0 Гц), что объясняется большим моментом инерции ротора. Период свободных колебаний ротора относительно синхронно вращающегося поля при параллельной работе с сетью:

  1. где J — момент инерции вращающихся частей;
  2. ω — угловая скорость вращения ротора;
  3. рс=dРЭМ/dq — удельная синхронизирующая мощность;
  4. р – число пар полюсов машины.

При качаниях с изменением угла Θ изменяется мощность машины и ток якоря. На наличие колебаний указывают колебания стрелок амперметра и вольтметра, включенных в цепь якоря. Собственные колебания часто наблюдаются у машин, работающих параллельно с сетью, при холостом ходе.

Для уменьшения амплитуды качаний и ускорения их затухания на роторе располагается короткозамкнутая демпферная (успокоительная) обмотка. При качаниях в демпферной обмотке при изменении частоты вращения ротора индуцируется ЭДС, по ней проходит ток и возникает асинхронный демпфирующий момент:

где D=ma/ω – коэффициент демпфирования; .

Действие демпферной обмотки подобно действию механического демпфера, потери на трение в котором успокаивают колебания механизма (например, сельсина).

При отсутствии демпфирования процесс колебания совершается без потерь энергии, свободные колебания становятся незатухающими, а в некоторых случаях могут даже увеличивать свою амплитуду, т. е. происходит самораскачивание синхронной машины.

Из-за явления самораскачивания во многих случаях оказывается невозможной параллельная работа с сетью малонагруженных генераторов малой мощности (до10-20 кВт) без демпферной обмотки.

Колебания ротора синхронной машины могут быть вынужденными, если на него действует периодически изменяющийся внешний момент. Они возникают в синхронных генераторах, приводимых во вращение от поршневых машин, и в синхронных двигателях, служащих для привода поршневых компрессоров.

Если частота вынужденных колебаний близка к частоте свободных колебаний, то возникают резонансные явления, при которых колебания угла Θ достигает больших значений и машина выпадает из синхронизма. Поэтому для уменьшения неравномерности вращающего момента на валу устанавливают маховик.

Пуск синхронного двигателя

Синхронный двигатель непосредственным включением обмотки статора (якоря) в сеть переменного тока не может быть запущен в ход.

Объясняется это следующим образом. При включении многофазной обмотки якоря в сеть практически мгновенно образуется вращающееся магнитное поле, частота вращения которого nп зависит oт частоты f протекающего по обмоткам тока (nп=60f/р).

«Полюсы» этого поля, перемещаясь в пространстве, будут взаимодействовать то с одноименными, то с разноименными полюсами неподвижного, возбужденного ротора. В соответствии с этим будет меняться направление вращающего момента, действующего на ротор.

В течение половины периода изменения тока в обмотках момент будет направлен в одну сторону, а в течение другой половины — в противоположную.

Пуск мог бы произойти, если бы ротор разогнался до установившейся скорости в течение полупериода, когда вра­щающий момент не меняет свой знак. При частоте 50 Гц полупериод равен 0,01 с. Из-за механической инерции за такое время роторы практически всех синхронных двигателей развернуться не смогут.

Существует несколько способов пуска двигателя. Эти способы заключаются в том, что в процессе пуска ротор двигателя разгоняется до скорости вращающегося поля, после чего двигатель входит в синхронизм и начинает работать как синхронный. Применение получили пуск с помощью разгонного двигателя, частотный пуск и асинхронный пуск. Наибольшее распространение имеет асинхронный пуск.

Пуск с помощью разгонного двигателя состоит в том, что посторонним (разгонным) двигателем ротор синхронной машины разворачивается до номинальной скорости. Обмотка возбуждения включена в сеть постоянного тока, а обмотка статора разомкнута. Затем производят включение ее на параллельную работу с сетью.

После подключения машины к сети разгонный двигатель механически отсоединяют от вала синхронной машины, и последняя переходит в двигательный режим. Мощность разгонного двигателя невелика и составляет 10—20 % номинальной мощности синхронного двигателя.

Эта мощность покрывает мощность механических и магнитных потерь в синхронном двигателе.

Частотный пуск применяется в том случае, если синхронный двигатель подключен к автономному источнику, часто­ту напряжения которого можно изменять от нуля до номинальной.

Если плавно повышать частоту питающего напря­жения, то соответственно будет увеличиваться скорость магнитного поля. Ротор, следуя за полем, постепенно будет повышать свою скорость от нуля до номинальной.

В процессе пуска машина все время работает в синхронном режиме.

Асинхронный пуск аналогичен пуску асинхронного двигателя. Для этого на роторе в полюсных наконечниках размещают пусковую обмотку. Эта обмотка выполняется по типу короткозамкнутой обмотки ротора асинхронного двигателя и имеет то же устройство, что и демпферная обмотка генератора. При пуске трехфазная обмотка статора включается в сеть.

Ток, который будет протекать по этой обмотке, создаст вращающееся магнитное поле. Оно наведет в пусковой обмотке ротора ЭДС и ток. В результате взаимодействия тока пусковой обмотки ротора с вращающимся магнитным полем образуется момент, под действием которого ротор придет во вращение и развернется до ско­рости, близкой к скорости поля ω1.

Вращение его будет происходить со скольжением, которое зависит от нагрузки на валу (ω

Способы запуска синхронных двигателей: типовые схемы и описание способов запуска, системы возбуждения

Синхронные двигатели, как правило, используются для того, чтобы максимально эффективно обеспечить работу крупных электрических приводов.

Оборудование с большой мощностью используют во многих промышленных сферах, его могут применять, например, металлургические или нефтегазовые компании.

Такие предприятия используют агрегаты для вентиляции, компрессоры, электронасосы, системы машин для обработки давлением металлов между вращающимися валками. Сегодня мы представим Вам обзор, как работают синхронные двигатели.

Преимущества и недостатки

Если сравнивать синхронные электродвигатели с асинхронными двигателями, однозначно у первых более сложный механизм, но также нужно выделить их существенные преимущества:

  • Работа синхронных двигателей не особо зависит от интенсивности напряжения.
  • Важным плюсом синхронных двигателей являются их сравнительно небольшие габариты, при этом их эффективность и механические функции намного лучше.
  • Независимо от того, какие будут колебания нагрузки, это никак не повлияет на обороты и скорость вращения.
  • Даже в случае значительных перегрузок на валу, синхронный двигатель будет работать без проблем, компенсируя такие пиковые скачки тем, что будет повышен ток в обмотке возбуждения.
  • Синхронные двигатели могут работать так же как компенсаторы, благодаря тому, что они могут производить реактивную энергию. Для этого нужно подать повышенное напряжение на обмотку возбуждения. Если же выставить ток возбуждения в оптимальном режиме, не будет потребляться реактивная энергия, так же она не будет уходить на сеть.

При всех вышеперечисленных преимуществах использования синхронных электродвигателей, мы должны так же отметить один основной недостаток – отсутствие пускового момента. То есть, для запуска двигателя, необходимо использовать отдельное оборудование.

Это как раз и есть основная причина, почему синхронные двигатели долгое время были ограничены в использовании.

Способы запуска

Существует 3 способа запуска синхронного двигателя:

  • использование дополнительного двигателя,
  • асинхронный запуск,
  • частотный запуск.

Для того, чтобы понять какой способ запуска применять, нужно разобраться с роторной конструкцией.

Он может быть выполнен с электромагнитным возбуждением, может состоять из постоянных магнитов, и может иметь комбинированную конструкцию. Кроме этого на роторе есть так называемая демпфирующая обмотка, помимо обмотки возбуждения. Такую короткозамкнутую обмотку называют еще «беличьей клеткой».

Использование дополнительного двигателя

Не самый популярный способ запуска, кроме того, не самый простой в плане технической реализации. Для того чтобы использовать такой способ, нужен еще один двигатель, его нужно присоединить к ротору электродвигателя.

Еще один двигатель нужен для того, чтобы скорость ротора соответствовала полю статора, то есть добиться синхронной скорости. Следующим этапом на обмотку возбуждения ротора будет подаваться постоянное напряжение.

Читайте также:  Горит масло в двигателе ваз 2107 причины

Подача напряжения на обмотку статора выполняется при помощи рубильника, и контролировать процесс мы будем благодаря лампочкам, которые включаются одновременно с рубильником. Рубильник нужно выключить.

Сначала лампочки начнут мигать, но как только номинальные обороты будут достигнуты, лампочки перестанут гореть. Дальше подается напряжение на обмотки статора, а наш синхронный двигатель продолжит работу самостоятельно.

Второй дополнительный разгонный двигатель нужно отключить от сети, иногда необходимо механическое отсоединение.

Асинхронный запуск

Этот метод используется чаще всего, возможность использовать такой способ появилась после того, как была изменена конструкция ротора.

Основное преимущество такого метода, это то, что нам не понадобится дополнительно оборудование, так как конструкция ротора содержит в себе короткозамкнутые стержни демпфирующей обмотки, и это позволит нам осуществить асинхронный режим для запуска.

Разгон электродвигателя будет асинхронным, запускаться он будет тогда, когда на статор будет подано напряжение. Как только будет достигнута необходимая скорость, включится обмотка возбуждения.

  • Чем больше будет расти скорость оборотов, во время пуска в обмотке возбуждения, тем больше будет расти напряжение.
  • При этом возникнет магнитный поток, он будет влиять на электроток статора, а также возникнет подавляющий момент, который может спровоцировать остановку ротора.
  • Чтобы уменьшить нежелательное влияние, нам понадобится резистор (либо разрядный, либо компенсационный), мы соединим его с обмоткой возбуждения.
  • Такие резисторы имеют форму громоздких боксов, в которых спирали из стали выполняют функцию резистивных элементов.
  • Это нужно делать обязательно, так, как существует риск поломки благодаря растущему напряжению.
  • После того, как будет достигнута под синхронная частота вращения, резистор будет отключен от обмотки возбуждения.

Дальше при помощи генератора, либо тиристорного возбудителя (ВТЕ, либо ТВУ и тд., зависит от серии), на обмотку пойдет постоянное напряжение. После этого двигатель перейдет в синхронный режим.

Помимо тех плюсов, которые мы описали выше, так же нужно понимать и недостатки такого запуска.

Главное – это значительные пусковые токи, которые могут стать причиной просадки напряжения питающей сети. Если такое случится, остальные синхронные машины, которые задействованы на той же линии, могут остановиться.

В такой ситуации сработают защитные функции из-за низкого напряжения. Чтобы избежать такой ситуации, понадобятся компенсационные устройства, которые мы подключим к цепи обмоток статора, таким образом мы ограничим пусковые токи.

Можно использовать:

  1. Дополнительные реакторы либо резисторы для ограничения пусковых токов. Когда произойдет разгон, они шунтируются, и сетевое напряжение пойдет на обмотки статора.
  2. Автотрансформаторы. Их можно применять, чтобы понизить напряжение на входе.

    Как только будет достигнута скорость оборотов, не менее 95-97 процентов, будет выполнено переключение. Автотрансформаторы будут отключены, при этом на обмотки будет подано напряжение сети переменного тока. После этого двигатель начнет работать синхронно.

    Данный метод используют не часто, он достаточно дорогой, и емкий по техническим параметрам. Кроме того, трансформаторы очень часто могут ломаться.

Частотный запуск

Если необходимо запустить мощные агрегаты от 1 до 10 МВт, используется еще один метод запуска для синхронных двигателей — это так называемый частотный запуск. Устройства для частотного запуска, как правило, имеют стандартное напряжение от 6 до 10 Кв.

Применяется такой запуск и в легком режиме (используя вентиляторную нагрузку), и в режиме тяжелого пуска (задействуется привод шаровых мельниц). В таких случаях используется специальное устройство.

  1. На схеме показан наглядный образец приспособления с очень плавным запуском: когда двигатель будет запущен, устройство включится, дальше будет выведено из схемы, и в результате двигатель будет напрямую подключен к сети.
  2. Это точно такая же система, как у низковольтных и высоковольтных устройств, которые работают по схеме частотного преобразования.
  3. При таком принципе можно запустить несколько двигателей благодаря одному устройству, а пусковой момент будет при этом доходить до 100%.

Системы возбуждения

Современные приспособления, предназначенные для контроля уровня возбуждения – это тиристорные возбудители ВТЕ.

Несмотря на то, что еще совсем недавно для этого использовали генератор независимого возбуждения, сегодня они перестали быть актуальными. Давайте рассмотрим функции тиристорных возбудителей ВТЕ:

  • создают необходимый режим для пуска синхронного двигателя;
  • поддерживают параметры тока возбуждения;
  • ограничивают крайние уровни тока, автоматом регулируют напряжение возбуждения, если возникает нагрузка;
  • в случае, если питающий ток будет понижен, они моментально увеличивают ток возбуждения;
  • если отключится питающая сеть, они мгновенно гасят поле ротора;
  • в случае проблем с изоляцией, оповещают о проблеме;
  • проверяют состояние обмотки возбуждения, если двигатель не работает;
  • осуществляют асинхронный и синхронный запуск, при работе высоковольтным частотным преобразованием.

Все эти функции говорят о надежности подобных систем возбуждения. Ну а главный их минус – это дорогостоящее оборудование.

Подводя итоги нашего обзора отметим, что асинхронный способ запуска на сегодня самый популярный, запуск с дополнительным электродвигателем практически никем не используется, частотный запуск эффективный, но имеет очень высокую цену.

Особенности пуска синхронных двигателей. Разновидности схем пуска синхронных двигателей

Синхрон­ный
двигатель при подключении его обмоток
статора к источнику питания не
развивает пускового момента, по­скольку
ротор из-за своей инерцион­ности
не может мгновенно достичь частоты
вращения, равной частоте вращения
магнитного поля статора, которая
устанавливается почти одно­временно
с включением обмотки ста­тора
в сеть. Поэтому между полюсами возбужденного
ротора и вращающего­ся
поля статора не возникает устойчи­вой
магнитной связи, создающей син­хронный
вращающий момент.

Для
пуска синхронного двигателя необходимо
предварительно привести ротор
во вращение с частотой, близ­кой
частоте вращения поля статора.

В
этих условиях поле статора настоль­ко
медленно перемещается относи­тельно
полюсов вращающегося рото­ра,
что при подключении обмотки возбуждения
к источнику питания между
полюсами ротора и вращающе­гося
поля статора устанавливается маг­нитная
связь, обеспечивающая воз­никновение
синхронного электромаг­нитного
момента. Под действием это­го момента
ротор втягивается в синх­ронизм,
т.е. начинает вращаться с син­хронной
частотой.

Существует
несколько способовпуска
синхронного двигателя, но практическое
применение получил асинхронный
пуск.
Для
его реализа­ции
в пазах полюсных наконечников ротора
располагают стержни пусковой
короткозамкнутой
обмотки, выполнен­ной
аналогично обмотке короткозамкнутого
ротора.

Обычно стержни
этой обмотки делают из ла­туни
или меди и замыкают с двух сто­рон
медными кольцами. Для
пуска синхронного двигателя замыкают
обмотку возбуждения ОВ на резистор
r
(рисунок),
включают в трехфазную
сеть обмотку статора. Вра­щающееся
поле статора индуцирует в стержнях
пусковой обмотки ЭДС и в этих
стержнях возникают токи.

В ре­зультате
взаимодействия этих токов с вращающимся
полем статора на каж­дый
стержень ротора действует элект­ромагнитная
сила .Совокупность
таких
сил создает на роторе асинхрон­ный
электромагнитный момент

png» width=»33″>,
поддействием
которого ротор начинает вращаться
в ту же сторону, что и поле статора. После
разгона ротора до час­тоты
вращения, близкой к синхрон­ной
(),
обмотку возбужденияОВ
подключают к источнику постоян­ного
тока.

При этом двигатель возбуж­дается
(полюса ротора намагничива­ются),
между вращающимся полем статора
и полюсами ротора устанав­ливается
устойчивая магнитная связь, создающая
синхронный электромаг­нитный
момент ,
и двигатель втяги­вается
в синхронизм, т.е.

его ротор начинает
вращаться синхронно с вра­щающимся
магнитным полем. При этом
в пусковой обмотке ротора боль­ше
не наводится ЭДС, поэтому асин­хронный
момент .

Также достаточно распространен метод
пуска синхронного двигателя посредством
асинхронного, находящегося на одном
валу с ним. АД выбирается такой чтобы
его номинальная скорость наиболее
совпадала с синхронной скоростью СД.

Затем происходит пуск асинхронного
двигателя.

Частота вращения синхронного
двигателя приближается к синхронной
частоте и в тот момент когда фаза
напряжения питающей сети и фаза напряжения
статора примерно совпадают, производят
включение обмотки статора в сеть и
двигатель втягивается в синхронизм.

Типовые схемы пуска синхронных электродвигателей

На сегодняшний день использование синхронных двигателей получило широкое распространение в сфере производства оборудования, работающего с постоянной скоростью, которое применяется в разных сферах человеческой деятельности. В связи с этим, существует несколько способов запуска синхронных электродвигателей, наиболее распространенные варианты которых будут представлены ниже.

Способы пуска синхронного электродвигателя

Способы пуска синхронного электродвигателя достаточно сложны, в этом заключается один из основных недостатков электродвигателей данного типа. Запуск синхронных электродвигателей осуществляется либо посредством воздействия вспомогательного пускового двигателя, либо с помощью асинхронного пуска. Рассмотрим каждый из способов в отдельности.

Читайте также:  Где находится датчик температуры двигателя лада гранта

Асинхронный пуск синхронного электродвигателя

Асинхронный пуск синхронного электродвигателя предполагает расположение дополнительной короткозамкнутой обмотки в полюсных наконечниках полюсов ротора. Это необходимо, чтобы обеспечить во время пуска вывод чрезмерно большой Э.Д.С.

, образующейся в обмотке (1), что является возможным благодаря замыканию рубильника (2) на соединение (3).

Благодаря тому, что магнитное поле, возникающее в результате включения напряжения трехфазной сети в обмотке статора (4), пересекает короткозамкнутую обмотку (пусковую обмотку), находящуюся в полюсных наконечниках ротора, индуктируются токи.

Действие этих токов в сочетании с вращающимся полем статора, запускают во вращение ротор, который постепенно набирает обороты. Достигнув 95-97% количества оборотов рубильник (2) ротора переходит в состояние, которое вынуждает обмотку ротора включить сеть постоянного напряжения.

Асинхронный пуск синхронного электродвигателя не лишен недостатков, точнее сказать, недостатка, которым является большой пусковой ток, который по значению может превышать в 7 раз рабочий ток.

Столь высокое значение пускового тока является причиной падения напряжения в сети, что негативно сказывается на функционировании других потребителей энергии.

Одним из наиболее распространенных вариантов решения упомянутого недостатка является использование автотрансформатора для понижения напряжения, а также использование тиристорных возбудителей для пуска синхронных электродвигателей, которые отличаются высоким К.П.Д. Именно высокое значение К.П.Д.

во многом определило выбор тиристорных возбудителей в качестве комплектов большей части выпускаемых синхронных электродвигателей крупных размеров. К тому же, применение тиристорных возбудителей позволяет автоматизировать процесс подачи возбуждения синхронному двигателю.

Автоматизация может быть реализована 2-мя способами: подача возбуждения синхронному двигателю в функции скорости и подача возбуждения синхронному двигателю в функции тока. При этом контроль подачи возбуждения синхронному двигателю в функции тока осуществляется с помощью реле тока.

На сегодняшний момент именно асинхронный пуск синхронных двигателей получил наибольшее распространение, так как его достаточно просто реализовать, а работает он крайне надежно.

Пуск синхронного двигателя при помощи вспомогательного двигателя

Пуск синхронного двигателя при помощи вспомогательного двигателя предполагает запуск синхронного электродвигателя благодаря работе другого двигателя, работа которого позволяет ротору синхронного двигателя развернуть полюса, осуществляя дальнейшее вращение совершенно самостоятельно.

Чтобы запуск произошел, нужно создать условия, при которых количество пар полюсов асинхронного двигателя было бы меньше количества пар полюсов синхронного двигателя.

Порядок запуска синхронного двигателя предполагает включение рубильника (3), пуск вспомогательного асинхронного двигателя (2), осуществляющего разворот ротора синхронного двигателя (1) до скорости, которая соответствует скорости поля статора. Далее включаются полюсы ротора после включения рубильника (4).

При включении синхронного двигателя в сеть трехфазного тока, требуется синхронизация, осуществляемая реостатом (5). Реостат организует возбуждение, позволяющее установить напряжение обмотки статора, определяемое вольтметром V, равное напряжению в сети, которое указывает вольтметр V1.

При разомкнутом рубильнике лампы (6), расположенные параллельно ножам рубильника (7), буду мигать.

По мере того, как будет меняться скорость ращения вспомогательного асинхронного двигателя, лампы будут постепенно начинать мигать все реже, пока все они не погаснут в раз.

Это сигнал того, что синхронный двигатель пора включать в сеть трехфазного тока рубильником (7). Так как ротор двигателя далее может вращаться без помощи, то вспомогательный двигатель (2) пора отключать от сети посредством рубильника (3).

Это сложная процедура, являющаяся самым главным недостатком такого варианта асинхронного электродвигателя, что определяет крайне редкие случаи ее практической реализации.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту zakaz@cable.ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация СД

Пуск СД непосредственным включением в сеть невозможен по причине того, что ротор из-за своей значительной инерции не может быть сразу раскручен полем статора, которое устанавливается практически мгновенно.

Поэтому магнитная связь между статором и ротором не возникает.

Для пуска СД приходится применять специальные способы, сущность которых состоит в предварительном привидении ротора во вращение до синхронной или близкой к ней частоте, при которой между статором и ротором устанавливается устойчивая магнитная связь.

Сейчас применяют способ асинхронного пуска. СД снабжают короткозамкнутой пусковой обмоткой(беличья клетка). Невозбужденный СД включают в сеть. Возникшее поле статора наводит в стержнях клетки ЭДС, которые создают токи, которые, взаимодействуя с полем статора, вызывают появление электромагнитных сил на стержнях клетки.

Под действием этих сил ротор приводится во вращение. При разгоне ротора до частоты вращения, близкой к синхронной, обмотку возбуждения подключают к источнику постоянного тока. Образующийся при этом синхронный момент втягивает ротор двигателя в синхронизм.

После этого пусковая обмотка выполняет функцию успокоительной обмотки и ограничивает качания ротора.

Чем меньше нагрузка на валу двигателя, тем легче его вхождение в синхронизм. В процессе асинхронного пуска обмотку возбуждения нельзя оставлять разомкнутой, так как ЭДС достигает значений опасных для изоляции обмотки. Для предотвращения этого в период разгона обмотку возбуждения замыкают на активное сопротивление в 10 раз большего сопротивления обмотки.

Самозапуск (С) – это восстановление нормальной работы электропривода без вмешательства персонала после кратковременного перерыва электроснабжения или глубокого снижения U.

Самозапуск ЭД позволяет наиболее полно использовать средства автоматизации систем электроснабжения.

Для обеспечения успешного С СД система возбуждения должна обеспечивать интенсивное гашение магнитного потока и ЭДС двигателя и создания оптимальных условий для вхождения в синхронизм.

При электромашинном возбудителе схемы самозапуска не отличаются от схем пуска. Сейчас наиболее распространен теристорный возбудитель.

В простейших случаях (при малой загрузке и легких условиях пуска и вхождения в синхронизм) могут применяться нерегулируемые тиристорные выпрямители, применение сложных возбудителей нецелесообразно.

Для мощных СД применяют безщеточные системы возбуждения

Самозапуск СД еще зависит от схемы управления его включением. В тех случаях когда возможен одновременный самозапуск всех ДВ, подключенных к секции шин, а ток несинхронного включения в пределах допустимого, никаких изменений в схемы управления включателями вносить не требуется.

Если из-за чрезмерного снижения напряжения одновременный самозапуск всех ЭД невозможен, часть из них отключается. При этом могут отключиться двигатели, самозапуск которых необходим по условиям технологии.

Включатели таких двигателей оборудуются АПВ и ДВ участвуют в самозапуске второй ступени

Как показали исследования и опыт эксплуатации, наибольшей опасности в момент включения подвергается обмотка статора синхронного двигателя. При пуске двига-теля относительная деформация изоляции обмотки стато­ра составляет 50х10^(-5) отн. ед. Установлено, что для синхронных двигателей мощностью до 2000 кВт при относительных деформациях не более 150х10-5 отн. ед.

не происходит нарушения изоляции, если такие деформации не слишком многочис­ленны. Так как деформации и усилия примерно пропорциональны квадрату тока, то предельно допустимое зна­чение тока включения составит √3 его пускового значения.

Учитывая сравнительно редкую необходимость осуществления самозапуска и малую вероятность того, что векторы напряжения сети и ЭДС двигателяв момент включения окажутся в противофазе, можно для всех синхронных двигателей мощностью до 2000 кВт считать самозапуск допустимым, если в самом неблагоприятном случае ток включения не будет превышать1,7 пускового, т. е.

в принятых относительных еди­ницах

— ресинхронизацией;

— ресинхронизацией с автоматической разгрузкой рабочего механизма (если она допустима) до такой степени, при которой обеспечивается втягивание двигателя в синхронизм; отключением двигателя и повторным его автоматич. пуском.

Восстановление нормальной работы возможно без отключения от сети выпавшего из синхронизма генератора. Можно оставить его на некоторое время в асинхронном режиме, а затем заставить снова войти в синхронизм, осуществив ресинхронизацию.

  • Если скольжение, с которым работает генератор в асинхронном режиме, станет равным нулю, то это оз­начает, что скорость вращения генератора стала синхронной
  • Условие S = 0 необходимое, но недостаточное для втягивания генератора в синхронизм. Для выявления второго условия рас­смотрим протекание процесса ресинхронизации
  • Избыточный мо­мент, определяющий движение генератора в асинхронном режиме, состоит из трех составляющих:

где МТ — момент турбины; Мс, Мас — синхронный и асинхронный моменты. Когда скольжение становится равным нулю, асинхрон­ный момент также равен нулю. Следовательно, условием втягивания генератора в синхронизм будет Мс>Мт

Ссылка на основную публикацию
Adblock
detector