Анаэробный двигатель принцип работы и устройство

Анаэробный двигатель принцип работы и устройство

Рендер подводной лодки проекта «Амур-950» с анаэробной энергетической установкой

ЦКБ МТ «Рубин»

Перспективная российская анаэробная энергетическая установка, которую планируется установить на опытовую подводную лодку проекта 677 «Лада» и новую неатомную субмарину проекта «Калина», получит батарею удвоенной мощности. Как пишет Mil.

Press FlotProm, электрическая мощность усовершенствованной батареи составит сто киловатт вместо 50 у существующего сегодня образца.

Разработку и испытания новой батареи для анаэробных энергетических установок подводных лодок планируется завершить к 2020 году.

Современные дизель-электрические подводные лодки имеют несколько преимуществ перед более крупными атомными подводными кораблями.

Одним из главных таких преимуществ является практически полная бесшумность хода в подводном положении, поскольку в этом случае за движение корабля отвечают лишь тихие электромоторы, питающиеся от аккумуляторных батарей.

Перезарядка этих батарей производится от дизельных генераторов в надводном положении или на глубине, с которой возможно выставить шноркель, специальную трубу, по которой воздух может подаваться к генераторам.

К недостаткам обычных дизель-электрических подводных лодок относится относительно небольшое время, которое корабль может провести под водой.

В лучшем случае оно может достигать трех недель (для сравнения, у атомных подлодок этот показатель составляет 60-90 дней), после чего подлодке придется всплыть и запустить дизельные генераторы.

Анаэробная энергетическая установка, для работы которой не нужен забортный воздух, позволит неатомной подводной лодке находиться в подводном положении существенно дольше. Например, подлодка проекта «Лада» с такой установкой может находиться под водой 45 суток.

Перспективная российская анаэробная энергетическая установка будет использовать для работы водород высокой степени очистки.

Этот газ будут получать на борту корабля из дизельного топлива методом риформинга, то есть преобразования топлива в водородсодержащий газ и ароматические углеводороды, которые затем будут проходить через установку выделения водорода.

Затем водород будет подаваться в водородно-кислородные топливные элементы, где и будет вырабатываться электричество для двигателей и бортовых систем.

Анаэробный двигатель принцип работы и устройство

Батарея БТЭ-50К-Э на испытательном стенде

Крыловский государственный научный центр

Батарея, иначе называемая электрохимическим генератором, разрабатывается Центральным научно-исследовательским институтом судовой электротехники и технологии. Эта батарея, вырабатывающая электричество за счет реакции водорода и кислорода, получила название БТЭ-50К-Э. Ее мощность составляет 50 киловатт. Мощность усовершенствованной батареи составит сто киловатт. Новая батарея будет входить в состав энергетических модулей перспективных неатомных подлодок мощностью 250-450 киловатт.

Помимо самих электрохимических элементов, иначе называемых водородными топливными ячейками, в состав таких модулей будут входить конверторы углеводородного топлива. Именно в них и будет проходить процесс риформинга дизельного топлива. Как рассказал изданию Mil.

Press FlotProm один из разработчиков новой батареи, конвертор углеводородного топлива в настоящее время находится на стадии разработки. Ранее сообщалось, что разработку анаэробной энергетической установки для подводных лодок планируется завершить до конца 2018 года.

В феврале прошлого года исследователи из Технологического института Джорджии объявили о разработке компактной четырехтактовой поршневой установки для каталитического риформинга метана и получения водорода. Новые установки могут быть объединены в цепь, тем самым повышая выход водорода.

Установка достаточно компактна и не требует сильного нагрева. Реактор работает по четырехтактному циклу. На первом такте метан, смешанный с паром, через клапаны подается в цилиндр. При этом поршень в цилиндре плавно опускается.

После того, как поршень достигает нижней точки, подача смеси перекрывается.

На втором такте поршень поднимается, сжимая смесь. Одновременно цилиндр подогревается до 400 градусов Цельсия. В условиях высокого давления и нагрева происходит процесс риформинга.

По мере выделения водорода, он проходит через мембрану, которая останавливает углекислый газ, также образующийся во время риформинга.

Углекислый газ при этом поглощается адсорбирующим материалом, смешанным с катализатором.

На третьем такте поршень опускается в самое нижнее положение, резко снижая давление в цилиндре. При этом углекислый газ высвобождается из адсорбирующего материала.

Затем начинается четвертый такт, на котором в цилиндре открывается клапан, а поршень вновь начинает подниматься. Во время четвертого такта углекислый газ из цилиндра выдавливается в атмосферу.

После четвертого такта цикл начинается снова.

Василий Сычёв

Проблема создания надежного анаэробного двигателя

?

vlad_burtsev (vlad_burtsev) wrote, 2015-05-08 18:21:00 vlad_burtsev vlad_burtsev 2015-05-08 18:21:00 Categories: Первая серийная дизель-электрическая подводная лодка (ДЭПЛ) четвертого поколения проекта 677 «Лада», что строится на «Адмиралтейских верфях» в Санкт-Петербурге, будет спущена на воду в декабре нынешнего года. Казалось бы, во всех отношениях радостная новость, ведь наш Военно-Морской флот просто заждался современного пополнения. Одно смущает — строительство «Кронштадта» началось еще в далеком 2006 году и не закончено до сих пор.

Это выглядит, по меньшей мере, странно, если учесть, что в последние годы отечественное кораблестроение недостатка в финансировании не испытывает. К тому же головная «Лада» под именем «Санкт-Петербург» находится в опытной эксплуатации на Северном флоте аж с 2010 года. Что же тогда мешало первой серийной подлодке «Кронштадт» раньше увидеть море? И вообще, что за подарок мы получим к Новому году?

С самого начала ДЭПЛ проекта 677 Главный штаб ВМФ анонсировал так: «Россия приступила к созданию принципиально новой неатомной подводной лодки с двигателем замкнутого контура для действий в ближней морской зоне.

Идет разработка новой подводной лодки для действий в прибрежных районах с энергетической установкой замкнутого цикла. Такие подлодки смогут в автономной режиме без всплытия находиться под водой по несколько недель».

Это действительно выглядело бы прорывом. Ведь все предыдущие отечественные неатомные подводные лодки имели и имеют общий, но роковой для многих недостаток.

Их скрытное непрерывное плавание не могло и не может пока продолжаться больше трех-четырех суток. Потом разряжаются аккумуляторные батареи.

Да и содержание углекислого газа в отсеках поднимается выше критических пределов, экипаж начинает задыхаться.

Хочешь или не хочешь, а подвсплывай на перископную глубину и выдвигай засасывающую воздух трубу РДП (устройство для работы двигателя под водой). Часто вблизи вражеских берегов. При полном отсутствии воздушного и морского прикрытия. Когда нет возможности в случае опасности нырнуть в спасительную глубину.

Этот общий для дизель-электрических подводных лодок порок пытались вылечить во многих странах. В СССР еще в 1935 году решили попробовать жидкий кислород, хранившийся в отсеке при температуре минус 180 градусов. Под экспериментальную двигательную установку переоборудовали подводную лодку С-92. Но вскоре оказалось, что жидкий кислород на подводной лодке – технологический тупик.

Другим путем пошли немцы. Их ученые для продолжительной работы двигателей ДЭПЛ в подводном положении предложили перекись водорода. Так, под самый занавес Второй мировой войны появились германские лодки XXVI серии. Они были способны в течение шести часов развивать на глубине подводную скорость до 25 узлов.

В боевых действиях эти чудеса техники принять участие не успели. Но трофеями для союзников по антигитлеровской коалиции оказались ценными. На их основе началось послевоенное развитие подводных флотов ведущих стран мира. В том числе и нашего.

Получившиеся в итоге энергетические установки стали называть анаэробными.

В середине 50-х годов прошлого века ВМФ СССР получил 29 малых подводных лодок проекта 615 с анаэробными установками. Эти лодки оказались единственными в мире, способными ходить под водой на дизельном двигателе. Их энергетические установки работали в замкнутом цикле с использованием кислорода и твердого химического поглотителя углекислого газа.

Правда, горели корабли проекта 615 столь часто, что сами моряки прозвали их «зажигалками». Да и грохотали эти подлодки на глубине слишком сильно. Поэтому в начале 70-х годов были сняты с вооружения.Однако к 60-м годам прошлого века в океан вышли первые атомные подводные лодки.

Они могли осуществлять подводное боевое патрулирование на огромных скоростях и месяцами не показываться на поверхности. Казалось, время ДЭПЛ ушло безвозвратно. Однако о «дизелюхах» пришлось вспомнить. В том числе и потому, что использование подводных атомоходов в Черном и Балтийском морях запрещено международными соглашениями.

К тому же каждая ДЭПЛ в среднем в 4,5 раза дешевле своего собрата с ядерным реактором на борту.

В этой области гонки подводных вооружений мы долгое время были в безусловных технологических лидерах. К 90-м годам прошлого века каждая вторая ДЭПЛ в мире была родом с советских верфей. Наиболее удачными подводными кораблями третьего поколения оказались ПЛ третьего поколения проекта 877 «Варшавянка». За малую шумность и высокую скрытность плавания прозванные в НАТО «черными дырами».

Где-то рядом в технологическом смысле тогда находились немцы. США интереса к дизельным подлодкам не проявляли и не проявляют, поскольку их экспансия простирается на весь Мировой океан. А для такого дела больше подходят атомоходы.

Проблему создания надежного анаэробного двигателя, способного обеспечить долгое пребывание на глубине, с наших конструкторов никто не снимал. В результате их усилий в ВМФ СССР к 90-м годам появился «Катран».

Это была экспериментальная лодка наиболее надежного и отработанного проекта 613 с энергетической установкой, оснащенной электрохимическим генератором. Однако плавать ей довелось недолго.

Советский Союз рухнул, и наше подводное кораблестроение погрузилось в многолетнюю спячку.

Читайте также:  Асинхронный двигатель не развивает мощность причины

За это время в Германии были спроектированы и запущены в серийное производство достаточно эффективные подводные лодки с анаэробными энергетическими установками на основе электрохимического генератора. Их работа, как и в годы Второй мировой войны, основана на использовании водорода. Проект корабля получил номер 212.

Закладка головной подводной лодки серии состоялась в декабре 1999 года. Первые четыре корабля переданы флоту ФРГ в 2005-07 годах. Затем строительство лодок немцы продолжили. В том числе – на экспорт.

Эти достижения так впечатлили российских конструкторов и моряков, что при создании собственных ДЭПЛ мы тоже решили использовать именно водород. И, кажется, сильно ошиблись. Потому что работы над отечественными анаэробными двигателями в ЦКБ МТ «Рубин» возобновились в начале 90-х, но до сих пор не завершены.

Головная ДЭПЛ четвертого поколения «Санкт-Петербург» в декабре 1997 года была заложена на «Адмиралтейских верфях».

Считалось, что пока корабль строят, проектирование российской анаэробной энергетической установки с электрохимическим генератором завершат. Не получилось.

С горем пополам «Санкт-Петербург» спустили на воду в 2007 году. Но … с обычным дизельным двигателем, что немедленно девальвировало всю затею.

Но мало того. Недоработанный двигатель «Санкт-Петербурга» работал лишь на 60 процентов от запланированной мощности. Возникли и другие проблемы. После долгих мытарств решено было принять подлодку «в опытную эксплуатацию с недоведенным ГЭД». И с глаз долой отправить ее на Северный флот. Причем, в боевой состав не принимать вообще, а оставить для всяческих экспериментов.

Обозленный Главный штаб ВМФ в 2010 году приказал было вообще свернуть работы по проекту «Лада». Пошли даже разговоры, что чем так мучиться, лучше попросту начать закупать у немцев их ДЭПЛ проекта 212. Вместе с вооружением и прочим.

Но со сменой верховного флотского начальства в 2012 году решено было все запустить по новой. Так питерские кораблестроители и взялись за уже ржавевший на стапеле «Кронштадт». Ставить на который, по большому счету, по-прежнему нечего. Разве что давно отработанный двигатель еще с «Варшавянки». Но тогда это будет корабль никакого не четвертого, а третьего поколения.

Другого выхода нет? Почему же? На Германии свет клином не сошелся. Есть опыт и других стран. Прежде всего – Швеции. Там вообще отказались от использования водорода на подлодках. Свои новейшие ДЭПЛ типа Gotland шведы оснастили так называемыми двигателями Стирлинга. Первая из них принята на вооружение в 1996 году. Еще две – в 1997-м.

По мнению экспертов, сегодня это лучшие корабли в своем классе.

Основной принцип работы двигателей Стирлинга основан на постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий.

Почему же мы не пошли вслед шведам? Эту тему еще в 2011 году «Свободная пресса» обсуждала с директором Инновационно-консультативного центра стирлингмашиностроения, заслуженным изобретателем РФ, доктором технических наук Николаем Кирилловым.

Вот фрагменты той давней беседы:

«СП»: — Почему мы отстали в двигателях?

— Потому что копировали немцев. В Германии в последние десятилетия были созданы дизельные подводные лодки проектов 212 и 214. Они тоже могут очень долго не всплывать на поверхность.

Но в их двигателях замкнутого цикла использован водород. Оказалось, что плавать на водороде очень дорого. В результате их самый последний – 214-й проект брать никто не хочет.

Теперь немцы сами признали, что зашли в тупик. А следом за ними и мы.

«СП»: — Выход есть, или мы отстали навсегда?

— Нас спасает то, что в России существуют серьезные заделы по двигателям Стирлинга. Есть даже опытные образцы.

«СП»: — Но под них надо создавать корабли принципиально других проектов?

— Абсолютно необязательно. Двигателями Стирлинга можно оснастить подводные лодки типа «Лада». Тогда они будут не хуже, чем у шведов, которые на сегодня лидируют в строительстве неатомных субмарин. Это сразу позволит и российскому ВМФ сделать огромный рывок, и много добиться в экспорте такого рода вооружений.

Повторяю, с той поры прошла уйма времени. С помпой анонсирован близкий спуск на воду «Кронштадта». 7 мая снова звоню Кириллову.

«СП»: — Николай Геннадьевич, четыре года назад мы подробно разговаривали с вами о трудностях с созданием российских неатомных подводных лодок типа «Лада». Что-нибудь изменилось с той поры?- Да практически ничего.

«Кронштадт», который в Питере собираются спускать на воду в этом году, — это никакой не корабль четвертого поколения. Будет просто улучшенная старая «Варшавянка». То есть корабль все того же третьего поколения.

Потому что анаэробной установки для «Кронштадта» так и не сделали.

«СП»: — А что будет?

— Практически тот же двигатель, что и на всех прежних наших неатомных лодках. С незначительными усовершенствованиями. Поэтому и на «Кронштадте» несение боевого дежурства без всплытия для подзарядки аккумуляторов не сможет продолжаться более четырех суток.

«СП»: — Мы что, так отстали в этой области от зарубежных конкурентов?

— Очень отстали. Долго копировали германский опыт. Тридцать лет пытались изготовить свои топливные элементы на водороде. Получилось крайне дорого. И ресурс небольшой. Да и в целом технологии не отработаны.

А шведы давно поставили на свои лодки двигатели Стирлинга и успешно их освоили. Теперь по тому же пути пошел даже Китай. Там поступили еще проще. Взяли купленную у России «Варшавянку», разрезали на две части. И вставляют в ее корпус собственный отсек с двигателем Стирлинга. Поэтому, думаю, очень скоро мы обнаружим, что в строительстве неатомных подводных лодок отстаем даже от Китая.

«СП»: — Но нам-то что мешает пойти по тому же пути?

— Вообще-то вопрос не ко мне. Хотя я тоже интересовался этим у коллег из ЦКБ «Рубин», которое работает над проектом «Лада». Там мне сказали откровенно: мы за тридцать лет работы над водородными топливными элементами сожрали столько бюджетных денег, что если вдруг признать этот путь ошибочным, нас просто порвут на части.

Сейчас старое руководство «Рубина» убрали. Но и новое занимается неизвестно чем. А анаэробной двигательной установки для российских подводных лодок как не было, так и нет.«СП»: — С связи с этой проблемой кто-нибудь из Министерства обороны или Главного штаба ВМФ выходил на ваш Центр?

Никто. Признаюсь вам: я вообще очень боюсь, что в обозримой перспективе Россия потеряет неатомное подводное кораблестроение.

Из досье «СП»

Шведские субмарины типа «Готланд» с двигателями Стирлинга способны непрерывно находиться под водой до 20 суток. Двигатели работают на жидком кислороде, который используется в дальнейшем для дыхания, имеют очень низкий уровень шума.Подобные двигатели установлены также в новейших японских подводных лодках типа «Сорю».

Подводная гонка за независимостью от воздуха

Подводная лодка «Готланд» / SaabПодводная лодка «Готланд» / Saab

В июне 2018 года в мире вновь активно заговорили о воздухонезависимых энергетических установках (ВНЭУ) для подводных лодок. В Швеции завершилась модернизация головной подводной лодки «Готланд» с ВНЭУ третьего поколения на основе двигателя Стирлинга. Китайский флот сообщает об успешных испытаниях местного воздухонезависимого двигателя. Руководители российского судостроения обещают в скором времени приступить к макетным испытаниям своих уникальных разработок.

Зачем кораблю воздух

Неатомные подводные лодки (НАПЛ) движутся за счёт электромоторов, снабжаемых энергией от аккумуляторных батарей, зарядки которых для движения в подводном положении хватает всего на несколько суток. Для подзарядки батарей используются дизель-генераторы, однако для их работы нужен воздух, за которым подлодке приходится подниматься на поверхность, выдавая своё положение.

Этого недостатка лишены атомные субмарины, которые могут находиться под водой месяцами, однако стоимость их создания значительно превышает цену дизель-электрических коллег.

Воздухонезависимые (анаэробные) энергетические установки могут значительно повысить подводную автономность НАПЛ. Свои решения в этой области созданы в Швеции, Германии, Франции, Японии, Китае и России.

Подходы у конструкторов разных стран отличаются, но общий вектор един – увеличить продолжительность подводного плавания НАПЛ на малом ходу в несколько раз за счёт выработки энергии непосредственно на борту. Это позволит значительно снизить заметность подводного «охотника» для технических средств противника.

Мировой опыт

Первую в мире серийную подлодку с ВНЭУ выпустила шведская верфь Kockums (входит в состав Saab). В основе анаэробной разработки лежит двигатель Стирлинга с внешним подводом теплоты. К середине 1990-х в Швеции было выпущено три субмарины с ВНЭУ типа «Готланд». Одна из подлодок этой серии передавалась в лизинг США и прославилась своими выдающимися показателями во время учения.

Подводная лодка «Готланд» / SaabПодводная лодка «Готланд» / Saab

Модернизация головной подлодки «Готланд» завершилась 20 июня 2018 года. По данным пресс-службы предприятия, после ремонта корабль получил воздухонезависимую установку третьего поколения.

Как утверждают шведы, обновлённый «Готланд» станет основой для создаваемой самой современной подлодки королевского флота – A26.

В Германии анаэробная энергетическая установка используется в подводных лодках U-212/214. По данным открытых источников, немецкие инженеры используют водородные топливные элементы. Минусом такого подхода является необходимость применения повышенных мер пожаробезопасности.

Аналогичную систему для подлодок типа «Скорпене» создала французская компания DCNS.

Китайские инженеры применили воздухонезависимую установку с двигателем Стирлинга на подводной лодке проект 039 типа Yuan. Национальные военно-морские силы рапортуют о небывалых показателях по глубине погружения и времени нахождения в подводном положении. Отметим, подтверждения этих данных из других источников пока не поступало.

Читайте также:  Бмв х5 е53 неисправности двигателя

Российские разработки

Российские учёные и корабелы также создают свою анаэробную установку, однако путь до промышленного образца и, тем более, серийного выпуска воздухонезависимых неатомных субмарин ещё не пройдён.

В конце июня 2018 год президент Объединённой судостроительной корпорации (ОСК) Алексей Рахманов заявил агентству ТАСС, что воздухонезависимая энергетическая установка будет впервые применена на неатомной подводной лодке пятого поколения, которая будет создана на основе проекта 677 «Лада».

Головная подлодка проекта 677 «Санкт-Петербург» / Адмиралтейские верфиГоловная подлодка проекта 677 «Санкт-Петербург» / Адмиралтейские верфи

Головная НАПЛ проекта «Лада» – «Санкт-Петербург» – была заложена на Адмиралтейских верфях в 2004 году. С 2010 года корабль находится в опытной эксплуатации. Строительство серийных кораблей этого проекта – «Кронштадт» и «Великие Луки» пока не завершено, но точно известно, что анаэробные установки на трёх первых субмаринах проекта 677 не используются.

По словам главы ОСК, в России созданы два проекта ВНЭУ (одна – разработки СПМБМ «Малахит», другая – ЦКБ «Рубин») на принципиально разных принципах. Обе установки существуют в качестве стендов и показывают хорошие результаты. В ближайшее время ОСК планирует перейти к макетным испытаниям установок. Видимо, на этом этапе и будет выбран основной разработчик.

Согласно опубликованным интервью руководства, анаэробная установка ЦКБ МТ «Рубин» предполагает получение водорода прямо на борту лодки методом риформинга. ВНЭУ не требует сложного берегового обслуживания и позволяет использовать стандартное дизельное топливо, которое уже находится на корабле. При этом установка не имеет движущихся частей, что даёт значительное преимущество в плане акустики.

Что касается СМПБМ «Малахит», то здесь открытой информации гораздо меньше. Как следует из годового отчета проектной организации, работы по созданию ВНЭУ с газотурбинным двигателем, работающей по замкнутому циклу (ГТД ЗЦ), ведутся специалистами бюро с 2010 года.

В 2015 году был создан действующий образец. Результаты последующих испытаний подтвердили возможность использования ВНЭУ с ГТД ЗЦ в качестве единой энергоустановки надводного и подводного хода.

Установка не имеет прямых аналогов в мировом кораблестроении, утверждают в «Малахите».

Впрочем, российские конструкторы не отказываются и от технического решения с помощью двигателя Стирлинга, как сделали шведские и китайские коллеги.

В июне 2018 года замгендиректора Фонда прямых инвестиций (ФПИ) Игорь Денисов заявил в интервью «Интерфаксу», что при участии фонда создаётся сверхавтономный необитаемый подводный аппарат, работающий от двигателя внешнего сгорания.

Предполагается, что аппарат сможет пройти подо льдами Северного морского пути.

По словам Денисова, аппарат должен быть создан к концу 2019 года. Испытания начнутся на Чёрном море, затем автономный подводный аппарат отправится на Север.

«Техника глазами дикаря» будет внимательно следить за результатами российских и зарубежных инженеров.

Подводные лодки с новыми анаэробными энергетическими установками

poisk

Originally published at Профессионально об энергетике. Please leave any comments there.

Современные неатомные подводные лодки (ПЛ) являются высокоэффективным средством вооруженной борьбы на море и представляют собой подвижные платформы, способные нести разнообразное оружие, а также совершать длительное плавание в отрыве от мест базирования.

В настоящее время ПЛ российских и иностранных фирм в принципе мало отличаются друг от друга или, во всяком случае, сопоставимы между собой по архитектуре, водоизмещению, оснащению высокоточным оружием, включая ракеты различного класса, способные поражать любые морские и наземные цели.

Эти ПЛ близки по живучести, надежности, возможностям радиоэлектронного вооружения и т.д.

Однако опыт показывает, что боевая эффективность дизельных подводных лодок в известной степени обесценивается из-за необходимости периодической подзарядки аккумуляторных батарей, что снижает скрытность их действий и повышает вероятность обнаружения. Так, дизельные подводные лодки ежесуточно затрачивают 2…5 ч на подзарядку батарей.

Кроме того, ограниченность энергетических запасов дизельных ПЛ не позволяет использовать их в арктических районах, покрытых льдами.

Проблема увеличения продолжительности подводного плавания, исключающего необходимость частого подвсплытия для зарядки аккумуляторных батарей, может быть решена благодаря применению анаэробных энергетических установок мощностью 100…300 кВт, что повышает срок автономности неатомных ПЛ до 480…720 ч.

  • В соответствии с классификацией, принятой в ВМС западных стран, неатомные подводные лодки принято делить на три подкласса:
  • — класс «А» – классические ПЛ с дизель-электрической главной энерго установкой (ГЭУ);
  • — класс «В» – подлодки с гибридной ГЭУ, включающей наряду с дизель-электрической установкой еще и дополнительную анаэробную (воздухонезависимую) подсистему;
  • — класс «С» – подлодки, оснащенные только специальной анаэробной ГЭУ.

Одними из первых боеспособных образцов ПЛ с гибридными ГЭУ являлись немецкие подлодки с так называемыми «парогазовыми турбинами Вальтера», работавшими на перекиси водорода. Германские подлодки XXVI серии с турбинами Вальтера были способны развивать подводную скорость до 24…25 узлов.

Корабельного запаса перекиси хватало на шесть часов полного хода, а в остальное время использовалась обычная дизель-электрическая установка и устройство для обеспечения работы дизеля на перископной глубине (шнорхель).

Лодки XXVI серии имели архитектурный облик, существенно отличавшийся от традиционных, ориентированный на уменьшение сопротивления в подводном положении.

Они стали своего рода шедеврами военно-морской техники, хотя вступить в строй и участвовать в боевых действиях не успели, зато послужили ценным материалом для стран-победительниц в послевоенной модернизации подводных флотов.

Подлодка С-92 на испытаниях в 1939 г. доказала возможность работы дизеля под водой по замкнутому циклу на протяжении 5,5 ч при мощности 185 л. с.

В июле 1946 г. вышло постановление Совета Министров С.С.С.Р о развитии работ по созданию подводных лодок с «едиными» двигателями. В соответствии с постановлением началось проектирование опытной малой подводной лодки проекта 615 водоизмещением около 390 т, оснащенной «единым» двигателем, который был аналогичен по схеме двигателю лодки проекта 95.

В 1955-1958 гг. на заводах № 196 и № 194 было построено 29 лодок этого типа. В процессе эксплуатации на лодках проекта А615 случилось несколько серьезных аварий.

Как выяснилось, аварии возникали вследствие неучтенных особенностей энерго установки и недостаточной подготовки личного состава, который нелестно отзывался о своих ПЛ, называя их «зажигалками».

Вторым из отобранных для реализации типов «единого» двигателя стала уже упомянутая парогазовая турбинная установка (ПГТУ) немецкого конструктора Вальтера. Ленинградское ЦКБ-18 в предэскизном проекте 616 воспроизвело германскую лодку XXVI серии. В 1947 г.

на территории советской оккупационной зоны в Германии создали специальное конструкторское бюро под руководством А.А. Антипина, которое занималось восстановлением технической документации парогазовой турбинной установки. Параллельно в ЦКБ-18 началось проектирование подлодки проекта 617 с ПГТУ.

При этом все оборудование, кроме ПГТУ, планировалось изготовить на отечественных заводах.

По проекту лодка водоизмещением около 950 т обладала способностью развивать скорость подводного хода до 20 узлов на протяжении 6 ч. Опытную лодку заложили 5 февраля 1951 г. на заводе № 196, а ее испытания завершились лишь 20 марта 1956 г. В 1956-1959 гг.

подлодка C-99 совершила 98 выходов в море и прошла более 6800 миль, из них 315 – с ПГТУ. 17 мая 1959 г. на корабле произошла серьезная авария: при запуске ПГТУ на глубине 80 м в турбинном отсеке прогремел взрыв. Лодка всплыла на поверхность и своим ходом пришла на базу.

После откачки воды из отсека было установлено, что несчастье произошло вследствие разложения перекиси при контакте с попавшей в клапан грязью.

Впоследствии в связи с успехами в создании атомных подводных лодок руководство советского ВМФ и отечественной судостроительной отрасли практически утратило интерес к неядерным «единым» двигателям для ПЛ.

Лишь в первой половине семидесятых годов минувшего столетия работы в указанном направлении возобновились. На этот раз была предпринята попытка оснащения подлодки проекта 613 энерго установкой с электрохимическим генератором мощностью 280 кВт. В 1988 г.

подлодка «Катран» проекта 613Э успешно прошла расширенные государственные испытания и подтвердила принципиальную возможность создания и эффективного использования новой энергетики.

Однако развал Советского Союза и последовавшие после этого события на несколько десятилетий отбросили создание отечественной ПЛ с электрохимическим генератором.

А конкуренты не дремали

В последнее десятилетие XX века в Германии, Швеции и Франции были созданы, прошли испытания и начали серийно выпускаться анаэробные энергоустановки на основе двигателей Стирлинга, парогазовых турбин и электрохимических генераторов.

Так, германские компании Howaldtswerke-Deutsche Werft GmbH (HDW) и Thyssen Nordseewerke GmbH (TNSW) спроектировали и построили четыре подлодки типа 212 (U 31 – U 34, переданные флоту в 2005-07 гг.). В сентябре 2006 г.

бундесмарине заказали еще две подлодки типа 212 со сроком их сдачи флоту в 2012-2013 гг.

Читайте также:  Датчик абсолютного давления ланос и обороты двигателя

Лодка типа 212 имеет подводное водоизмещение 1360 т, длину 53,5 м, ширину 6,8 м и высоту от киля до вершины ограждения выдвижных устройств 11,5 м. В одном из походов U 32 установила мировой рекорд длительности движения в подводном положении (без использования шнорхеля), оставаясь погруженной на протяжении двух недель.

Помимо ВМС Германии, аналогичными подлодками решили обзавестись и итальянские моряки. Фирма Fincantieri по германской лицензии построила в 2005-2007 гг. две лодки (S526 Salvatore Todaro и S527 Scire). В марте 2008 г. итальянское правительство приняло решение заказать еще две подлодки типа 212.

Несколько измененным и усовершенствованным типом германской подлодки с электрохимическими генераторами является проект 214, предложенный немецкими фирмами ВМС Греции.

При стандартном водоизмещении 1700 т и длине 65 м лодка способна погружаться на глубину 400 м и несет вооружение из восьми 533-мм торпедных аппаратов. Греческое правительство заказало в Германии три лодки указанного типа.

Успешно завершились переговоры о постройке четвертой подлодки Katsonis со сроком готовности в 2012 г.

Свой вклад в создание воздухонезависимых энергетических установок для ПЛ внесли и французы. Так, группой фирм, входящих в кораблестроительный концерн DCN, для французской подводной лодки «Скорпен» (тип Agosta-90B, подводное водоизмещение 1760 т, длина 67 м) была разработана парогенераторная анаэробная ЭУ типа MESMA (Module D’Energie Sous Marine Autonome).

Три подводные лодки типа Agosta-90B были заказаны ВМС Пакистана в 1994 г. Две первые субмарины, Khalid (S137) и Saad (S138) первоначально не были оборудованы анаэробной ЭУ; головной лодкой с такой системой стала третья ПЛ – Hamza (S139).

Существуют проекты оснащения подлодок гибридными энергетическими установками с включением в их состав маломощных атомных реакторов. Подводные лодки, оснащенные малогабаритными ядерными реакторами, по существу, останутся дизельными.

Эти установки фирма предполагает поставлять в виде отдельной секции, полностью подготовленной к врезке в корпуса существующих ПЛ или к сборке строящихся. Один из вариантов переоборудования предлагался применительно к подводным лодкам типа «Виктория».

Пожалуй, наиболее впечатляющих результатов в разработке анаэробных установок достиг шведский концерн Kockums Submarin Systems.

На французской ПЛ Saga и шведской ПЛ Naecken типа А14 в процессе модернизации были смонтированы двигатели Стирлинга V4-275R, которые использовались в качестве вспомогательных энергетических установок для экономического подводного хода.

При переоборудовании в прочный корпус лодки ПЛ Naecken непосредственно за ограждением рубки была сделана вставка длиной около 8 м с двумя двигателями Стирлинга мощностью по 110 кВт, осуществляющими привод генераторов постоянного тока. Запас жидкого кислорода позволял лодке Naecken находиться под водой без всплытия до 14 суток.

Затем концерн Kockums Submarin Systems сделал еще более впечатляющий шаг, построив в 1992-1996 гг. три ПЛ класса Gotland (тип А19). Энергетическая установка подлодок включала обычные дизели и два двигателя Стирлинга V4-275R мощностью по 75 кВт. Длина субмарин – 60,4 м, подводное водоизмещение – 1599 т.

Самый многообещающий проект шведов связан с перспективной подводной лодкой Viking. Это название выбрано не случайно. В реализации проекта должны участвовать еще две скандинавские страны – Норвегия и Дания.

Фирма Kokums в содружестве с норвежской и датской судостроительными компаниями образовали консорциум для практической работы над проектом. Всего планировалось построить 12 субмарин нового поколения.

По мнению ведущих специалистов, эта была бы лучшая неатомная подводная лодка начала XXI века. На ней планировалось установить единый двигатель Стирлинга большой мощности (ориентировочно 800 кВт).

Однако сегодня судьба «Викинга» оказалась в руках Европейской судостроительной компании, контролируемой немецкими концернами. А они, разумеется, не слишком-то заинтересованы в успехе скандинавов, своих прямых конкурентов.

На помощь скандинавам нежданно-негаданно пришли японските ВМС, которые еще в 1997 г. спустили на воду субмарину S 589 Asashio, на которой в порядке эксперимента смонтировали два двигателя Стирлинга.

После завершения цикла испытаний японские адмиралы приняли решение о постройке уже целой серии ПЛ класса Soryu, первая из которых должна вступить в строй в марте 2009 г.

Эти лодки значительно крупнее немецких и шведских (подводное водоизмещение 4200 т, длина 84 м, экипаж 65 человек).

И наконец, последними из мировых держав окончательный выбор по типу анаэробной установки сделали американцы. Их решение однозначное – двигатели Стирлинга. Для этого в 2005 г.

ВМС США взяли в лизинг шведскую подводную лодку типа Gotland, оснащенную вспомогательной воздухонезависимой установкой Стирлинга. Как сообщает журнал Jane’s Defence Weekly, субмарину предполагали использовать для отработки противолодочных операций кораблями американского флота.

Лодка была приписана к военно-морской базе Сан-Диего (штат Калифорния), где находится Командование противолодочной войны. Отметим, что ВМС США в последнее время вновь стали проявлять повышенное внимание противолодочной обороне.

Это объясняется стремительным ростом военно-морских сил Народно-освободительной армии Китая и, прежде всего, количественным увеличением и повышением качества подводного флота КНР.

Подводная лодка типа Gotland нужна США и для освоения современных технологий неатомного подводного судостроения, утраченных в Соединенных Штатах. В 2006 г.

американская корпорация Northrop Grumman и шведская фирма Kokums, построившая ПЛ типа Gotland, подписали соглашение о сотрудничестве.

В рамках этого сотрудничества американские специалисты получат возможность в деталях изучить конструкцию новейшей субмарины шведского флота. А помогут им в этом шведские моряки, которые будут нести службу на лодке вместе с американскими коллегами.

По мнению ведущих специалистов, субмарины с гибридными ЭУ уже в настоящее время по своим характеристикам не только приблизились к атомоходам, но по некоторым показателями даже превосходят их. Так, в ходе двух учений в Атлантике, прошедших в 2003 г.

, шведская подводная лодка Halland с анаэробными двигателями Стирлинга «победила» в дуэльной ситуации испанскую субмарину с обычной дизель-электрической установкой, а затем и французскую атомную лодку. Она же в Средиземном море одержала верх в «схватке» с американской атомной подводной лодкой Huston.

При этом необходимо отметить, что малошумный и высокоэффективный Halland стоит в 4,5 раза дешевле своих атомных соперников.

Достоинства гибридных ЭУ

Учитывая приблизительно одинаковый уровень совершенства оружия и радиоэлектронного вооружения большинства ПЛ западноевропейских стран – основных поставщиков ПЛ на мировом рынке, конкурентоспособность перспективных ПЛ будет во многом определяться типом двигателя, примененного в анаэробной ЭУ.

От всех известных преобразователей энергии прямого цикла (дизелей, паровых и газовых турбин, карбюраторных двигателей внутреннего сгорания, ЭХГ и др.

), которые могут использоваться в составе анаэробных установок, двигатели Стирлинга выгодно отличаются целым рядом качеств, которые обуславливают перспективу их применения на неатомных ПЛ: практическая бесшумность в работе из-за отсутствия взрывных процессов в цилиндрах двигателя и клапанного механизма газораспределения и достаточно плавного протекания рабочего цикла при относительно равномерном крутящем моменте, что напрямую влияет на акустическую скрытность ПЛ – главную составляющую обобщенного показателя – «скрытность ПЛ»; высокий к.п.д. (до 40 %), что значительно выше соответствующего показателя лучших образцов дизелей и карбюраторных ДВС; возможность использования в качестве горючего нескольких типов углеводородного топлива (соляровое топливо, сжиженный природный газ, керосин и др.); эксплуатация двигателей Стирлинга, работающих на традиционном топливе, не требует создания сложной береговой инфраструктуры (в отличие от электрохимических генераторов); моторесурс современных двигателей Стирлинга составляет 20…50 тыс. часов, что в 3…8 раз превышает срок жизни топливных элементов (около 6 тыс. часов); при сроке эксплуатации ПЛ порядка 25…30 лет применение двигателей Стирлинга позволит сократить необходимое количество подводных лодок на 35…40 % по сравнению с потребным числом лодок с электрохимическими генераторами (из-за более высокой надежности).

По мнению ряда иностранных и отечественных специалистов, двигатель Стирлинга является наиболее конкурентоспособным типом двигателя для анаэробных энергетических установок неатомных ПЛ в силу указанных выше преимуществ.

Более того, если сегодня разрабатываются установки, увеличивающие подводную автономность до 30…45 суток на режимах экономического хода, то в недалеком будущем двигатель Стирлинга можно рассматривать как единый всережимный источник энергии, обеспечивающий как подводный, так и надводный ход во всем диапазоне нагрузок.

Отечественный ВМФ заинтересован в создании ПЛ с анаэробными ЭУ для использования их на Балтийском и Черном и морях, где использование атомоходов исключено по политическим мотивам. Общая потребность ВМФ в таких подлодках ориентировочно составляет 10-20 единиц.

Весьма крупным рынком сбыта неатомных ПЛ с двигателями Стирлинга в недалеком будущем станет международный рынок вооружений, где начиная с 2005 гг. наблюдается устойчивое повышение спроса на подобные ПЛ со стороны стран Латинской Америки, Юго-Восточной Азии, Ближнего и Среднего Востока.

В целом, ориентировочная рыночная ниша составляет от 300 до 400 ПЛ при средней стоимости ПЛ около $300…400 млн.

В настоящее время неатомные ПЛ входят в состав 30 флотов зарубежных стран. Учитывая, что срок службы этих лодок оценивается около 30 лет и то, что большинство из них было построено не позднее конца восьмидесятых годов минувшего века, можно ожидать, что с 2010 г. многие перечисленные страны задумаются о приобретении новых неатомных ПЛ вместо устаревших кораблей, исчерпавших свой ресурс.

Ссылка на основную публикацию
Adblock
detector