Асинхронный двигатель при работе от ибп

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами.

Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами.

Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора.

На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон.

На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Асинхронный двигатель при работе от ибпРис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин.

По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Асинхронный двигатель при работе от ибпРис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Асинхронный двигатель при работе от ибпРис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Асинхронный двигатель при работе от ибпРисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам.

У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность.

У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором.

Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5).

Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Асинхронный двигатель при работе от ибпРис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность.

Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись.

Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Асинхронный двигатель при работе от ибпРис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора.

Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1https://www.youtube.com/watch?v=ZQO5S9F72CQ

Часть 2https://www.youtube.com/watch?v=nDCdADUZghs

Часть 3https://www.youtube.com/watch?v=6M_w1b2xyM8

Часть 4https://www.youtube.com/watch?v=CONHg7p-IYE

Часть 5https://www.youtube.com/watch?v=z2YSqVh1vM8

Часть 6https://www.youtube.com/watch?v=FNU83kOeSbA

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

Таблица 1

Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
2 28 36 60
3,5 45 56 100
5 60 75 138
Читайте также:  Голубоватый дым из выхлопной трубы на холодном двигателе

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Асинхронный двигатель при работе от ибпРис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Список использованной литературы

  • Кацман М.М. «Электрические машины»  2013
  • А.А. Усольцев «Электрические машины» 2013
  • Бартош А.И. «Электрика для любознательных» 2019

Расскажем, как выбрать ИБП

Асинхронный двигатель при работе от ибп

Источник бесперебойного электропитания (ИБП) — устройство, позволяющее при отключении центрального электроснабжения на некоторое время обеспечивать работу электрических приборов. О том, как выбрать ИБП для разных целей, пойдет речь в этом обзоре.

Стоит учесть, что время, на которое продлевается работа техники с помощью большинства ИБП, — всего несколько минут (5-7 минут в бюджетных моделях, до 20 минут в более дорогих, крайне редко при неполной нагрузке — более часа). Устройство полезно, к примеру, для того, чтобы сохранить информацию, а также чтобы не замечать кратковременных отключений электричества и не перезагружать после них компьютер.

Но для продолжения полноценной работы компьютера или другой техники в течение длительного времени помимо ИБП понадобится еще один из типов оборудования:

  • внешние батареи к ИБП (можно присоединить только к предназначенным для этого моделям ИБП);
  • электрогенератор (например, бензиновый).

При необходимости длительной работы на компьютере без электричества, вместо ИБП стоит рассмотреть переход на смартфон, планшет или ноутбук с Power Bank. Такое устройство обеспечит длительное функционирование гаджетов, так как современные Power Bank значительно превосходят по возможностям традиционные аккумуляторы и имеют при этом несравнимо меньшие размеры.

Не забудьте проверить, какое напряжение указано на зарядном устройстве вашего гаджета: Power Bank должен иметь соответствующие характеристики.

Выбор типа

Асинхронный двигатель при работе от ибпНа рынке представлено три основных типа источников бесперебойного электропитания:

  1. резервные;
  2. интерактивные;
  3. с двойным преобразованием.

Резервные

ИБП этого типа, также называемые offline, наиболее дешевые и функционируют следующим образом: при наличии напряжения в сети прибор подает питание прямо от нее к включенной в него технике и параллельно с этим подзаряжает собственные аккумуляторы. В случае выключения электричества ИБП переключается на свои аккумуляторы. Это занимает некоторое время (от 4 до 15 миллисекунд).

Подходит для компьютеров, обладающих собственной защитой от минимальных скачков напряжения.

Интерактивные

Основное отличие данного типа — наличие стабилизатора напряжения.

Подобные ИБП способны сглаживать более существенные колебания напряжения без использования аккумуляторов, что продлевает срок их службы. Переход на батарею ускоряется до 2-4 мс.

Оптимальный вариант для компьютера. Для техники с асинхронными двигателями (например, для стиральных машин) эти устройства не подходят.

Читайте так же:  Узнаем, чем отличается ибп от стабилизатора напряжения

ИБП с двойным преобразованием энергии

Наиболее дорогостоящий вариант, обеспечивающий стабильное напряжение, подходящее, в том числе, для чувствительного к стабильности напряжения оборудования. В приборе идет непрерывное преобразование тока из переменного в постоянный и снова в переменный. Переход на аккумуляторы происходит мгновенно, без задержки.

Такое оборудование может быть шумным, поэтому его не рекомендуют к использованию в жилых помещениях.

Как подобрать по мощности?

Для выбора ИБП нужно установить мощность всех электроприборов, которые будут в него включены. Большей мощностью, в сравнении со стандартными, обладают игровые компьютеры и более крупные мониторы.

Рассчитанную сумму стоит увеличить на 20-30%. Это и будет требуемая мощность ИБП.

Таким образом, формула для расчета будет выглядеть так:

Мощность ИБП = (мощность прибора 1 + мощность прибора 2 .. + мощность прибора N)*1,25.

Подсчет должен производиться в единых величинах (либо все в ваттах, Вт или W, либо все в вольт-амперах, ВА или VA). Если электроприбор при запуске потребляет больше энергии, можно выяснить его коэффициент пускового тока и при вычислении использовать мощность, увеличенную на этот коэффициент.

Например, указанный коэффициент для компьютера, по некоторым источникам, равняется двум.

Выбор времени работы

Асинхронный двигатель при работе от ибп

  • Но самые дешевые приборы, рассчитанные на полминуты работы с полной нагрузкой, возможно, приобретать не стоит.
  • Для каждого устройства этот показатель индивидуален, данные об этом указываются в сопроводительной документации или на упаковке изделия.
  • Если ИБП используется не на полную мощность (например, 200 Вт из 400 максимальных), то время автономной работы будет несколько больше указанного в инструкции.

Но так как зависимость этого показателя от мощности нелинейна, простой формулы для расчетов для неполной нагрузки нет.

Разъемы питания и дополнительные интерфейсы

Для каждого прибора, который планируется использовать с ИБП, на устройстве должен быть собственный подходящий вход. Типов подключения к ИБП довольно много:

  • евророзетка;
  • компьютерная розетка;
  • USB;
  • разъемы для штекеров, аналогичных телефонным, и т.д..

Сроки работы

Ресурс эксплуатации ИБП указывается на упаковке или в инструкции изделия, он ограничен в основном сроком службы его батарей. Если возможна замена аккумуляторов, то срок службы устройства можно значительно продлить.

Для этого на момент замены батареи должны быть в продаже и доступны для заказа в конкретный регион.

При покупке старой модели ИБП, через 5 лет приобрести их, вероятно, будет сложнее, чем для только что вышедшей версии устройства.

Замена батарей может быть самостоятельной (если устройство для этого адаптировано) или производиться в сервисном центре.

Обзор моделей, подходящих для разных целей

Будут предложены рекомендации для выбора источника бесперебойного питания, подходящего:

  • для газового котла;
  • для дачи;
  • для домашних бытовых приборов;
  • для компьютера.

Читайте так же:  Создание ИБП своими руками

Для газового котла

Асинхронный двигатель при работе от ибп

  • INELT Intelligent 500LT2 — модель интерактивного типа, которая подойдет при суммарной нагрузке в районе 300 Вт. Набор с дополнительным аккумулятором обойдется от 15 до 46 тысяч рублей, в зависимости от емкости внешней батареи и времени автономной работы (от 1 до 8 часов). Мощность 500 ВА или 300 Вт. Время переключения на аккумулятор — 4 мс. Два выхода компьютерного типа. Имеется холодный старт. Вес 6,5 кг. Есть защита от перегрузки и от короткого замыкания. Отзывы покупателей свидетельствуют о шумности устройства (исправляется заменой кулера), быстром переключении на батареи, чрезмерно длительном гарантийном ремонте. Надежность индивидуальна, некоторые экземпляры работают долго.
  • INELT Monolith K3000LT — ИБП с двойным преобразованием, подходящий для общей нагрузки в пределах 2 кВт. От 57 до 140 тысяч рублей будет стоить комплект с батареями, рассчитанными на 1,5-4,2 часа автономной работы. Выходная мощность — 3000 ВА/2100 Вт. 1 выходной разъем. Есть слот для дополнительных интерфейсов. Защита от перегрузки и высоковольтных импульсов. Вес 15 кг. ИБП не имеет встроенных батарей и оснащен зарядным устройством большой мощности. Видимо, в связи с высокой ценой, отзывов о модели обнаружить не удалось.

Для дачи

Асинхронный двигатель при работе от ибп

  • ИБП с двойным преобразованием Powerman Online Plus 3000 можно приобрести за 17,5 тысяч рублей. Выходная мощность 3000 ВА/2400 Вт. Три евророзетки, ЖК-экран, холодный старт. Высокая степень защиты. Вес 11,6 кг. Продается без встроенной батареи.
  • ИБП с двойным преобразованием Tieber T-1000 обойдется без дополнительных аккумуляторов примерно в 13,5 тысяч рублей. Мощность 10000 ВА/8000 Вт. Два разъема (евророзетки). Присутствует слот для дополнительных интерфейсов, ЖК-экран. Аккумулятор в комплект не входит. Защита от перегрузки и короткого замыкания. Вес 8 кг.

Отзывов по данным моделям на Яндекс.Маркете не обнаружено.

Для домашних бытовых приборов

Асинхронный двигатель при работе от ибп

  • Интерактивный ИБП 3Cott 3C-3000-MCSE. Обратите внимание на эту модель существенной мощности (3000 ВА/1800 Вт). Она обеспечит 70 минут независимой работы при половинной нагрузке. Если нужно при отключенном электричестве воспользоваться утюгом, феном, микроволновкой или чайником, этот прибор обеспечит такую возможность (не стоит включать все сразу, учитывайте суммарную мощность). Две евророзетки, высокая степень защиты, время зарядки — 4 часа, вес — 21 кг. Цена около 9 тысяч рублей.
  • Интерактивный ИБП 3Cott 3C-2000-MCSE мощностью 2000 ВА/1200 Вт сможет работать 50 минут при полной нагрузке. Цена его примерно 8 тысяч рублей, вес 17 кг. ЖК-экран, холодный старт, достойная степень защиты.

Отзывов на эти модели тоже пока нет.

Для компьютера

Здесь зачастую не требуется существенной мощности ИБП (кроме случаев мощных компьютеров и крупных мониторов).

Читайте также:  Ptcl6a10cvx1 что за двигатель

А так как при отключении централизованного энергоснабжения, как правило, выключается и проводной интернет, и ПК использовать при этом большого смысла нет, во время отключений можно перейти на работу с мобильным устройством, питание которого обеспечит Power Bank. Поэтому для ПК выбираем бюджетные модели ИБП:

  • ИБП Powerman Back Pro 600 BA при цене около 1,6 тысяч рублей обеспечит 10 минут работы при половинной нагрузке. Полная мощность 600 ВА/390 Вт. Имеет 3 компьютерных разъема, несколько видов защиты, весит 6,34 кг. Пользователи отмечают непритязательный дизайн и стабильную работу устройства.
  • Интерактивный ИБП Ippon Back Basic 650 Schuko обойдется от 2 тысяч рублей. Покупатели пишут о стабильной тихой работе и невысокой цене. Выходная мощность 650 ВА/360 Вт, 2 евророзетки, защита, вес 4,35 кг.

Читайте так же:  Все про ИБП для сервера

Выводы

Для ответа на вопрос, как выбрать ИБП, стоит четко определить список устройств, которые будут к нему подключены, их суммарную мощность, тип розеток, а также выяснить, как надолго выключается электричество.

Установка дополнительных батарей к выбранному мощному ИБП значительно повышает стоимость  системы.

В этом случае имеет смысл рассмотреть приобретение иного оборудования для обеспечения длительной работы техники (электрогенераторы, Power Bank, газовые горелки для приготовления пищи).

Асинхронный двигатель: пуск, резервирование, управление

http://www.eprussia.ru/epr/141/10902.htm

Газета «Энергетика и промышленность России» | № 01-02 (141-142) январь 2010 года

В промышленных системах существует категория потребителей, которые требуют непрерывного и качественного электроснабжения независимо от присутствия и качества напряжения в электрической сети.

Построение систем гарантированного электроснабжения

Для этого применяются системы, построенные на основе электронных преобразователей напряжения и аккумуляторной батареи, обозначаемые UPS (Uninterruptible Power System). Стандартный UPS, выполненный по технологии Online, обеспечивает бесперебойное питание потребителей переменным напряжением стабильной амплитуды и частоты, не зависящим от качества напряжения в электрической сети. Асинхронный двигатель при работе от ибп

Стандартные UPS применяют для питания большинства потребителей, таких, как: компьютерные системы, аварийные источники освещения, устройства телекоммуникации, контроллеры КИПиА, контроллеры АСУ ТП и т. д. Однако существуют категории потребителей, требующих индивидуального подхода в решении вопроса гарантированного электроснабжения.

Стандартные UPS допускают кратковременную перегрузку на выходе максимум до трех номинальных значений выходного тока. В частности, для запуска асинхронных двигателей, подключенных в качестве потребителей, такой перегрузочной способности стандартного UPS недостаточно, т. к. пусковые токи двигателей могут шестикратно превышать номинальный ток.

Дополнительный фактор, что ток питания двигателя, получаемый от перегруженного UPS, не обладает синусоидальной формой, что может привести к нарушениям во время запуска, а также к полному отсутствию запуска. Проблему можно решить увеличением номинальной мощности UPS, но это приводит к удорожанию всей системы.

Фирма APS Energia предлагает техническое решение для данной категории потребителей.

FAT – система гарантированного электроснабжения асинхронных электродвигателей

В промышленных системах различных отраслей в качестве одной из составляющих применяются приводные системы, которые должны бесперебойно вращаться электродвигателями, либо необходим старт двигателя в момент исчезновения напряжения в электрической сети. В качестве примера подобных приводных систем можно рассматривать:
• маслонасосы смазки подшипников турбогенераторов;
• механизмы турбогенераторов, поддерживающие вращения ротора после прекращения подачи пара в турбину;
• вентиляторы подачи выхлопных газов к дымоходам;
• мазутные насосы;
• циркуляционные насосы, водяные насосы, пополняющие котлы и т. п. Одним из вариантов решения проблемы гарантированного электроснабжения вышеупомянутых приводных систем является использование двигателей постоянного тока с электронными регуляторами и резервным питанием от аккумуляторных батарей. К сожалению, существующие недостатки двигателей постоянного тока исключают повсеместное применение этих систем. К этим недостаткам относятся:
• большие габариты, а также стоимость двигателя постоянного тока по отношению к асинхронному двигателю;
• ограниченный срок службы из‑за износа коллектора и потребность в обслуживании;
• искрение коллектора. Последний недостаток особенно нужно брать во внимание, когда двигатель используется в приводе масляных насосов или работает вблизи или внутри взрывоопасных производственных зон. Этих недостатков лишена система, построенная на основе асинхронного двигателя и системы FAT, схема которой изображена на рисунке 2a. Рис. 2а. Блок-схема FAT для питания асинхронного двигателя
br

В нормальном состоянии двигатель запитан от электрической сети через выпрямитель и преобразователь DC/AC. При исчезновении напряжения в электрической сети двигатель через этот же преобразователь бесперебойно переходит на питание от аккумуляторной батареи.

Кроме того, при включении FAT обеспечивает плавный пуск двигателя за счет автоматического регулирования частоты напряжения питания двигателя, в результате чего отсутствуют пусковые токи и перегрузка силовых цепей на выходе FAT. Представленная на рисунке 2а схема является стандартной схемой системы FAT.

По желанию заказчика APS Energia может расширить функции системы, как показано на рисунках 2б и 2в.

Асинхронный двигатель при работе от ибпАсинхронный двигатель при работе от ибп

Данная система обеспечивает гарантированное питание дополнительных потребителей за счет применения второго инвертора. В данной системе возможность регулирования частоты напряжения, питающего двигатель, позволяет регулировать производительность насоса. Это обеспечивает стабилизацию давления или расхода в системе, к которой подключен насос.

Преимущества использования

системы FAT производства APS Energia
В качестве двигателя приводной системы используется очень простой и дешевый асинхронный электродвигатель. В сети отсутствуют броски тока, потребляемого системой FAT при пуске двигателя. Рисунок 4б представляет запуск двигателя насоса, запитанного от системы FAT. Пусковой ток двигателя равен номинальному току, но при этом двигатель сразу после пуска развивает максимальный момент на валу. Данный режим работы достигается за счет автоматического регулирования частоты и напряжения питания на выходе FAT. Это значительно облегчает запуск любого двигателя, а особенно тяжелый запуск двигателя, например запуск мазутного насоса зимой. Для сравнения, момент на валу и протекание тока в двигателе, запитанном от электрической сети или от стандартного UPS, представлены на рисунке 4а. Асинхронный двигатель при работе от ибп

Путем подбора емкости аккумуляторной батареи в системе FAT обеспечивается требуемое время работы потребителей во время аварии в сети.

Путем введения в систему FAT обратной связи от приводной системы, например сигналов от датчиков давления или расхода трубопровода, можно легко регулировать параметры установок, в которых работают насосы, приводом которых являются асинхронные двигатели (регулируемая частота выходного напряжения FAT).

Путем установки дополнительных элементов в систему FAT:
• появляется возможность запитать дополнительных потребителей стабильным переменным напряжением;
• после запуска и синхронизации с напряжением сети двигатель, питающийся от FAT, может быть переключен на питание от электрической сети.

При исчезновении напряжения в сети FAT выполнит обратное переключение и обеспечит работу двигателя от аккумуляторных батарей. Данное решение аналогично функции By-pass, используемой в стандартном UPS. Путем установки дополнительного программатора система FAT может обеспечить, при больших мощностях и стартовых нагрузках, запуск двигателя в запрограммированном под его индивидуальные параметры режиме.

ООО «АПС ЭНЕРГИЯ РУС»
620144, г. Екатеринбург, Московская ул., д. 195, оф. 901
Тел. (343) 344‑999-1 (2, 3)
Факс (343) 344‑999-0

E-mail: aps@apsenergia.ru, www.apsenergia.ru

СРО, Мощность, Напряжение
, Сети
, Турбины, Энергоснабжение, Кабельная арматура, Провод,

Асинхронный электродвигатель в качестве генератора

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О.

Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части — статора и подвижной части — ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя.

Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий.

Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название — короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу.

По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС).

Читайте также:  Ваз 2106 замена двигателя как его снять

Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток.

Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы — трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10-6,

где С — ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А Холостой ход Полная нагрузка
ёмкость, мкФ реактивная мощность, квар cos = 1 cos = 0,8
ёмкость, мкФ реактивная мощность, квар ёмкость, мкФ реактивная мощность, квар
2,0 3,5 5,0 7,0 10,015,0 28 45 60 74 92120 1,27 2,04 2,72 3,36 4,185,44 36 56 75 98 130172 1,63 2,54 3,40 4,44 5,907,80 60 100 138 182 245342 2,72 4,53 6,25 8,25 11,115,5

Таблица1

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости.

Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы.

Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте.

Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа «Россиянка», «Мечта» мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт.

Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме — «резки» металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях.

Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом.

КМ — косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит «драгоценное» топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа «Ока», «Волга», поливальных насосов «Агидель», «БЦН» и пр.

У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить.

Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) — больше.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%.

Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя.

При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других — коммутируют цепь возбуждения.

Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя.

Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: «фазу» и «ноль».

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он «не любит» холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы — 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме «холостого хода» должно на 4…6 % превышать промышленное значение 220/380 В.Асинхронный двигатель при работе от ибп

Асинхронный двигатель при работе от ибп

Ссылка на основную публикацию
Adblock
detector