Давление во всех форсунках дизельного двигателя

Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу.

Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров.

От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

Форсунки для дизельных двигателей – что это?

В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

Давление во всех форсунках дизельного двигателя

Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

Давление во всех форсунках дизельного двигателя

По способу управления детали делятся на однопружинные, двухпружинные, с датчиками контроля положения иглы и управляемые пьезоэлектрическими элементами.

Кроме всего прочего, схема форсунки дизельного двигателя зависит от способа ее монтажа в головке цилиндров: при помощи фланца, хомута или путем вворачивания в гнездо.

Принцип работы форсунки дизельного двигателя – кратко о сложном

Основное назначение таких деталей заключается в дозировании и распылении топлива, а также герметичной изоляции камеры сгорания. В результате исследований были разработаны насосы-форсунки, которые устанавливаются в каждый цилиндр по отдельности.

Принцип работы форсунки дизельного двигателя нового типа заключается в том, что она функционирует от кулачка распределительного вала через толкатель. Подача и слив топлива осуществляется через специальные каналы в головке блока.

Дозирование топлива происходит через блок управления, который подает сигналы на запорные электромагнитные клапаны.

Давление во всех форсунках дизельного двигателя

Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

Давление во всех форсунках дизельного двигателя

Топливные форсунки в большинстве случаев нуждаются в простом уходе, чаще всего, для того чтобы вернуть их в рабочее состояние, достаточно просто их очистить и промыть.

Независимо от того, сколько форсунок в двигателе, случается, что при резком нажатии на педаль газа ощущаются рывки и провалы или ощутимо снижается мощность, мотор начинает неустойчиво работать на низких оборотах, значит, произошла закупорка каналов форсунки твердыми смолянистыми отложениями.

Что же делать?

Промывка форсунок дизельного двигателя – способы реализации

Загрязнение этого элемента ведет к нарушению распыления топлива и приводит к неправильному образованию воздушно-топливной смеси. В идеале пульверизация должна быть максимально равномерной. Основной источник загрязнения – содержащиеся в топливе смолы. Промывка форсунок дизельного двигателя может устранить все нарушения подачи топлива в цилиндры.

Давление во всех форсунках дизельного двигателя

Процесс очистки форсунок предусматривает удаление различных загрязнений в топливных каналах. В настоящее время применяется несколько способов:

  • чистка форсунок дизельных двигателей с помощью ультразвука;
  • промывка форсунок топливом с добавлением специальных присадок;
  • промывка с использованием специальных жидкостей на стендах;
  • промывка вручную.

Давление во всех форсунках дизельного двигателя

Для автомобилистов наиболее приемлемым является последний вариант, поскольку он позволяет проводить работы по очистке форсунок в домашних условиях.

Однако в запущенных случаях приходится обращаться к услугам автоцентров, где проводится очистка при помощи ультразвука, что является более жестким способом.

К данному виду очистки рекомендуется прибегать только в случае, если промывка специальными жидкостями не дала положительного результата.

  • Михаил
  • Распечатать

Признаки и причины неисправностей форсунок. Дизель и бензин

Современный дизель — это высокоточная система подачи и впрыска топлива. Однако, современный дизель не самый надежный агрегат. Во многом надежность дизеля не связана с конструктивностью самой системы, а больше зависит от качества применяемого в автомобиле топлива.

А так как в странах бывшего СССР дизельное топливо не самого хорошего качества, то в дизельной системе часто происходят поломки. Из-за некачественного топлива владельцам дизельных машин чаще всего приходится обращаться в СТО для ремонта форсунок.

В отличие от бензиновых форсунок, которые чаще всего меняются полностью и не ремонтируются, дизельные форсунки можно попытаться отремонтировать. Для того, чтобы понять нужен ли ремонт форсунок, попробуем разобраться немного в теории.

Давление во всех форсунках дизельного двигателя

Признаки неисправности форсунок дизельного двигателя

Чаще всего неисправность дизельных форсунок очень быстро обнаруживается водителем. Но если у владельца дизельного авто не было опыта владения подобным автомобилем, то он может сразу и не распознать поломку. Первым делом следует обратить внимание на работу двигателя.

На первых этапах никаких признаков поломки не проявляется. Автомобиль начинает наоборот ехать чуть лучше, чем обычно. Да, я сейчас не оговорился. Все именно так. Дело в том, что из-за неисправных форсунок внутрь камеры сгорания может поступать больше топлива, чем требуется.

Из-за богатой смеси машина начинает ехать лучше.

Если упустить этот момент, то плавная езда постепенно перерастет в более крупную поломку. Через некоторое время Вы начнете замечать, что автомобиль стал поддымливать при запуске, а холостой ход стал не стабильным, а обороты начали плавать.

На самых запущенных стадиях расход топлива увеличивается в разы, а автомобиль начинает дымить уже при езде или резком нажатии на педаль газа. Постепенно, когда форсунка переливает топливо, оно начнет попадать через кольца в масло. Из-за этого уровень моторного масла может увеличиться, а его свойства ухудшатся. А это уже может привести к серьезному ремонту.

Почему форсунки на дизельном двигателе выходят из строя?

Форсунки на дизельном моторе выходят быстрее, чем на бензиновом моторе. Это обусловлено тем, что у этих моторов разный принцип работы.

Но в обоих случаях виной всему является некачественное топливо или несвоевременная замена фильтра очистки топлива. Если обслуживать машину вовремя, то форсунки должны отработать без замены и ремонта не менее 150 000 км.

Если же использовать еще и качественное топливо, то заводские форсунки должны ездить 200-300 тыс. км.

Но, как правило, топливо используется не самое качественное, а фильтра меняются редко. Поэтому форсунки в современных дизелях едва ли выхаживают 150 тыс. км.

После чего загрязняются и начинают дозировать топливо неправильно. Чтобы это исправить, придется как минимум произвести их механическую очистку от отложений и грязи.

Данную процедуру лучше не откладывать в долгий ящик, а работу доверить людям, разбирающимся в этом.

Поэтому заливайте качественное топливо и делайте вовремя ТО. Качественное своевременное обслуживание автомобиля поможет избежать неприятных поломок в будущем.

Принцип работы форсунки дизельного двигателя

Опишем конструкцию детали на примере примитивной механической форсунки с 1 пружиной. В боковой части расположен канал, обеспечивающий непрерывную подачу солярки. Внутри камеры форсунки имеется подвижный барьер с пружиной и иглой, который опускается при росте давления. Игла поднимается, освобождая путь топлива к распылителю.

Дополнительно можно отметить более продвинутые типы форсунок:

  1. Пьезоэлектрические: толкатель пружины опускается под воздействием пьезоэлемента. Такая технология обеспечивает высокую интенсивность открытия распылителя: достигается экономия топлива, при этом ДДВС работает более ровно.
  2. Электрогидравлические: в конструкции имеются впускной и сливной дроссели, а также электромеханический клапан. Режим работы компонентов регулируется блоком управления двигателя.
  3. Насос-форсунки: применяются в моторах, в которых отсутствует топливный насос высокого давления. Горючее подаётся непосредственно форсунки. Внутри таких устройств распыления имеется собственная плунжерная пара, которая генерирует необходимое для впрыска давление.
Читайте также:  Starline a61 функции запуск двигателя

Давление во всех форсунках дизельного двигателя

Вследствие чрезмерных нагрузок форсунка может выйти из строя из-за нарушения режима эксплуатации мотора. Производителями заявляется ресурс деталей до 200 000 км, но в силу негативных эксплуатационных факторов износ деталей проявляется гораздо раньше.

Причины неисправности форсунок

Ремонт дизельных форсунок может потребоваться по следующим причинам:

  1. Низкое качество солярки: бич всех «дизелистов». Из-за примесей в горючем распылитель забивается; нарушается дозировка и режим подачи топлива.
  2. Низкое качество сборки компонента впрыска или заводской брак: форсунка не выдерживает эксплуатационных условий, выходит из строя деталь в целом или отдельные компоненты.
  3. Механические повреждения, вызванные некорректной работой смежных систем ДДВС.

Обычно поломки имеют следующий характер: изменяется угол распыления и количество подаваемого топлива, нарушается целостность корпуса, ухудшается ход иглы.

Признаки неисправности дизельных форсунок

Кратко опишем «симптоматический ряд»:

  • при движении ощущаются рывки и толчки;
  • ДВС нестабильно работает на холостых оборотах, глохнет;
  • при работе мотора выделяется чрезмерное количество выхлопа;
  • ощутимая потеря тяги;
  • отказ отдельных цилиндров;
  • сизый или чёрный дым из выхлопной трубы.

Ремонт форсунок

Текущее обслуживание или капитальный ремонт форсунок дизельных двигателей предпочтительно поручить квалифицированным специалистам — они смогут провести восстановление и регулировку детали на высокоточных автоматизированных стендах. Однако определённый комплекс ремонтных процедур можно провести и в кустарных условиях без использования сложной аппаратуры.

Необходимые инструменты и материалы

Для проведения самостоятельного обслуживания распылителей дизельного мотора автовладельцу потребуются:

  • набор рожковых или накидных ключей;
  • отвёртки под прямой и крестовый шлиц;
  • чистая сухая ветошь;
  • максиметр;
  • промывочная жидкость для ДДВС.

Рекомендуется проводить работы в сухом и освещённом, защищённом от пыли гараже.

Проверка работоспособности форсунки

Существует несколько методов проверки работоспособности распылителя. Проще всего проверить форсунку на работающем моторе:

  1. Запустите «движок» на холостом ходу.
  2. Начинайте поочерёдно выкручивать распылители один за другим.
  3. Если после снятия работа мотора ухудшилась, то удалённая форсунка исправна и её нужно вернуть на место.
  4. Методом исключения Вы найдете форсунку, демонтаж которой не изменит режим работы ДДВС. Это и будет сломанное устройство.

Можно для диагностики использовать мультиметр. Заранее необходимо скинуть клеммы АКБ и отключить проводку форсунок, после чего «чекнуть» прибором каждую деталь. На форсунках высокого сопротивления значения прибора будут находиться в диапазоне 11 — 17 ом; при низком импедансе мультиметр покажет до 5 ом.

Совет: Большим преимуществом будет наличие максиметра. Прибор способен показать текущее давление, при котором срабатывает распылитель. Также поможет выявить дефекты, касающиеся угла распыления и конфигурации струи впрыска.

Давление во всех форсунках дизельного двигателя

Устранение возможных неисправностей

Неисправную форсунку необходимо осмотреть. Сначала ищем наличие протечек в корпусе детали. Если таковых нет, приступаем к разборке детали. Крепим деталь в тисках и аккуратным простукиванием выбиваем распылитель.

Далее нужна тщательная чистка: вымачиваем части форсунки в солярке или растворителе для удаления нагара. Снимаем гарь и отложения мелкой стальной тёркой. После завершения чистки нужно проверить форсунку на максиметре.

Если достигнуты оптимальные параметры впрыска, устройство готово к установке в мотор.

В иных случаях необходимо полностью заменить распылитель на дефектной форсунке. При установке новой запчасти тщательно удалите всю заводскую смазку, иначе устройство не будет работать.

Если форсунка продолжает «лить» даже после замены распылителя и тщательной чистки, обратите внимание на работоспособность пружины со штифтом — возможно, они изношены.

Для чистки распылителя пользуйтесь компрессором — напор воздуха выбьет труднодоступную грязь.

Установка форсунки

До демонтажа устройства сделайте метки маркером на всех деталях, чтобы избежать путаницы. Особенно внимательно размечайте шланги высокого давления. Форсунка вкручивается от руки насколько хватит сил. Дальнейшая затяжка выполняется ключом-динамометром.

Значения затяжки указываются в руководстве по эксплуатации мотора. Когда установите форсунку, выкачайте воздух из топливной системы.

На современных авто для этого достаточно несколько раз крутануть стартер; либо воспользуйтесь насосом ручной подкачки (при наличии).

Случаи, когда форсунка подлежит замене полностью

Перечислим основные признаки:

  • выработан ресурс, заявленный производителем;
  • на корпусе имеются пробои, иные нарушения герметичности;
  • прогоревшая гайка распылителя: если неполадку не устранить на ранней стадии, то сам распылитель придёт в негодность.

Обратите внимание, что на некоторых моторах после установки новой форсунки необходимо «привязать» её к двигателю: внести изменения в настройки блока управления.

Устанавливать форсунку лучше на СТО, так как на станции имеется стендовое оборудование для регулировки и оценки текущего состояния детали.

Заключение

Самостоятельный ремонт форсунок — мера скорее вынужденная. Такой сервис в кустарных условиях может принести успех только в случае высочайшей квалификации мастера. Главная проблема гаражного ремонта — отсутствие высокоточного стендового оборудования для диагностики. Ремонтник не может объективно оценить эффективность сервисных мероприятий.

Если есть возможность обратиться на СТО, не пренебрегайте ею: компьютерное оборудование и стенды очистки продлят жизнь форсункам, избавят от потенциального дорогостоящего ремонта. Та же ультразвуковая чистка может избавить автомобилиста от проблем двигателя на несколько сезонов.

Давление во всех форсунках дизельного двигателя

Конструкция

Инжектор — самый важный элемент в системе впрыска бензиновых двигателей. Это электромагнитный клапан, который работает «под командой» ЭБУ, электронного блока управления двигателем. После получения импульсов определённой частоты, ЭБУ «отмеряет» дозу необходимого топлива, в зависимости от нагрузки двигателя и температуры охлаждающей жидкости.

Точная и отлаженная работа этого механизма позволяет двигателю долго и исправно работать: меньший расход топлива, большая мощность и крутящий момент, легкий пуск двигателя при любых температурах — всё это плюсы отлаженной работы инжектора, но любые сбои в его работе ухудшают работу всего двигателя.

Очень часто в неисправной работе бензинового двигателя виноваты электромагнитные форсунки, которые не выполняют своих функций, или частично неисправны.

Это происходит из-за того, что нет электрического импульса на открытие клапана, может быть, произошёл обрыв обмотки электромагнита, а может быть загрязнены внутренние клапаны.

Загрязненные внутренние клапаны чаще всего дают о себе знать авто-владельцу именно зимой при запуске инжекторного двигателя.

Поиск поломок

Если одна из форсунок вышла из строя, то «признаки болезни» двигателя могут совпадать с симптомами болезни неисправной свечи зажигания. Двигатель плохо работает, появляется сильная вибрация.

Обнаружить поломанную форсунку можно при помощи поочерёдного отключения разъёмов. Если обороты двигателя снижаются, то форсунка работает отлично, если обороты не идут на спад значит, форсунка сломана.

Как найти причину поломки?

Это делается при помощи специального тестера, вначале проверяют подаваемое напряжение на форсунки (нормальное давление от 0 до 2-3В), если напряжение есть, значит с форсункой всё в порядке. Далее осуществляется проверка обмотки клапанов форсунок.

При нормальной работе форсунок они имеют сопротивление 12-16 Ом, в системах с турбонаддувом – 4-5 Ом, а в системах с моноинжектором – 4-5 Ом. Подвижность электроклапана форсунки определяется моментальным подключением клемм форсунки к источнику электропитания, например, к аккумулятору двигателя.

Нормально работающий инжектор будет слегка щёлкать, это будет говорить о нормальной работе клапана, при этом, если клапан работает, а цилиндр нет, значит, форсунка очень сильно загрязнена.
На станциях техобслуживания уровень загрязнения форсунок проверяют при помощи мультитестеров по продолжительности импульсов, которые ЭБУ подаёт для открытия клапана.

Если форсунка загрязнена, то время импульса увеличивается.
Также, если в работе двигателя обнаружены нарушения, то можно проверить токсичность отработавших газов. Их токсичность повышается при переобогащении смеси, ухудшении смесеобразования, при невозможности воспламенения горючей смеси.

Если в машине установлен трёхкомпонентный катализатор, то здесь показателем ухудшения работы форсунок может служить увеличение содержания окислов азота. При этом, если иномарка новая, то не отработанное топливо в виде газов может быстрее вывести катализатор из строя.

Читайте также:  Газ 5204 какой двигатель

Причины засорения форсунок

Некачественное топливо — вот одна из главных причин поломки форсунок. Огромное количество смол, которые оседают внутри форсунок, снижают пропускную способность, они не позволяют герметично закрываться клапанам, и тем самым меняется угол струи впрыскиваемого топлива.

При запуске двигателя в зимнее время, вышедший из строя клапан, является причиной переобогащения смеси, вследствие чего происходит повышенный расход топлива и повышается токсичность отработавших газов.

При некорректном распылении топлива происходят нарушения в процессе смесеобразования, а это является первой причиной ухудшения практически всех показателей двигателя.

Засорение форсунок происходит при использовании поддельных топливных фильтров, либо же если просто авто-владелец забыл поменять во время фильтр.

При давлении в системе топлива может просто произойти разрыв фильтра, и грязь, естественно, попадёт в форсунки.

Ремонт

Форсунки ремонту не подлежат. Только регулярный уход и обслуживание систем питания поможет продлить жизнь вашим форсункам. Специалистами придуман ряд способов чистки инжектора.

Использование специальных моющих присадок к топливу определённо продлит жизнь вашим форсункам и всей топливной системе.

Однако только качественные присадки, и при регулярном применении помогут вашему автомобилю и его топливной системе.

Промывка инжектора

Отдельно хотелось бы отметить, что в иномарках с большим пробегом очистка с присадками может полностью вывести всю систему из строя, когда вся грязь из не промываемой системы смывается со стенок топливного бака, и устремляется к фильтру, и далее в форсунки. Сетка на форсунках забивается, и топливо перестаёт поступать.
Другой способ — это промывка инжектора без демонтажа, т.е.

инжектор, остаётся не разобранным. Сначала отключают бензобак, затем штатный топливный насос и перекрывается канал слива топлива в бак. Одновременно с этим топливо-провод машины соединяется с профессиональным стендом, который подаёт в систему специальную жидкость. Два прогона жидкости с двумя перерывами — по 15-20 минут на каждые 15-20 тыс.

километров пробега, и ваша топливная система будет подготовлена к зиме.
Ультразвуковой стенд — вот ещё один из способов чистки. Форсунки снимают и помещают в ванну с моющим раствором, где под действием ультразвука даже самые сильные отложения разрушаются.

На этом же стенде можно проверить качество чистки.

Опыт показал, что ультразвуковой метод наиболее эффективен, и он даже может вернуть к жизни форсунки, которые уже не подлежат ремонту.

Давление во всех форсунках дизельного двигателя

Источники: drive2.ru, motorsguide.ru, oils-market.ru.

Характеристика давления впрыска

С точки зрения идеального процесса распыливания желательно, чтобы давление перед распылителем в процессе всего впрыска оставалось постоянным или имело максимум в начале впрыска, когда в цилиндр вводятся первые порции топлива, обеспечивающие самовоспламенение. Однако в реальных процессах давление, при котором топливо впрыскивается в цилиндр через форсунку, не является постоянным, и характер его изменения, как правило, далек от идеала.

Характер изменения давления перед распылителем в значительной степени зависит от типа топливной системы, режима работы двигателя, состояния элементов топливной аппаратуры и ряда других факторов.

На рисунке 5.

17 представлены зависимости изменения давления перед распылителем по углу поворота, называемые характеристиками давления впрыска для трех основных типов топливных систем, используемых в современных СДВС.

Наиболее стабильное давление в течение всего впрыска обеспечивает аккумуляторная система малооборотного дизеля серии RT-flex фирмы Wärtsilä. Наличие большого объема аккумулирующего пространства позволяет на протяжении всего впрыска поддерживать давление на постоянном, достаточно высоком уровне в независимости от режима работы двигателя.

Стабильный впрыск обеспечивает система подачи топлива с гидравлическим электроуправляемым приводом ТНВД, используемая на двигателях серии ME фирмы MAN. Наличие гидравлического привода позволяет получить закон подачи топлива в камеру сгорания, практически независящий от частоты вращения двигателя.

У дизелей серии MC этой же фирмы, оборудованных системой впрыска с механическим приводом, при снижении частоты вращения отмечается снижение давления впрыска, пропорциональное уменьшению скорости плунжера.

Параметры топливоподачи, определяющие характер протекания процесса впрыска, делят на статические (геометрические) и динамические.

Статические параметры характеризуют процесс топливоподачи насосом высокого давления, динамические — форсункой.

Эти параметры характеризуют топливоподачу с качественной стороны, они показывают, как располагаются фазы впрыска топлива относительно ВМТ поршня и определяют начало, конец и продолжительность подачи топлива насосом (φнпн, φкпн, φн) и форсункой (φнпф, φкпф, φф). Эти данные являются основой для анализа процессов сгорания, экономических и динамических показателей рабочего процесса двигателя.

Взаимное влияние статических и динамических фаз топливоподачи показано на рисунке 5.18. На нем видно, что динамические фазы сдвинуты по отношению к статическим в сторону вращения коленчатого вала. Основная причина такого смещения фаз — упругость топлива, заполняющего линию высокого давления.

Схематично представленные на рисунке 5.18 кривые изменения давлений в полости топливного насоса (Pн) и перед распылителем форсунки (Pф) характерны для систем непосредственного действия с нагнетательным клапаном, установленным в насосе. Кроме кривых давления на диаграмме представлены график подъема иглы форсунки и круговая диаграмма процесса топливоподачи.

До начала подачи рабочая полость насоса заполняется топливом под давлением Pнпн, создаваемым подкачивающим насосом.

После перекрытия верхней кромкой плунжера наполнительного отверстия наблюдается резкое увеличение давления Pн, что свидетельствует о начале активного хода плунжера (φнпн).

Угловой промежуток между началом подачи топлива насосом и ВМТ двигателя определяет угол опережения подачи по насосу (φопн).

Установленный в ТНВД нагнетательный клапан открывается, когда давление Pн возрастает до остаточного давления Pост, поддерживаемого в линии нагнетания между впрысками. До этого момента система нагнетания перекрыта с одной стороны иглой форсунки, с другой — нагнетательным клапаном насоса.

Давление во всех форсунках дизельного двигателя

После открытия нагнетательного клапана рост давления будет происходить по всей линии нагнетания.

Волна давления, создаваемая плунжером, движется к форсунке и, достигая ее, приводит к увеличению давления перед форсункой Pф.

При достижении Pф давления начала подачи форсунки Pнпф, величина которого определяется предварительным затягом пружины игольчатого клапана, игла поднимается, пропуская топливо в сопловый наконечник.

Момент появления струи топлива из сопловых отверстий распылителя форсунки, отнесенный к положению коленчатого вала двигателя, называется углом начала впрыска. Начало впрыска, отнесенное к положению поршня в ВМТ, называется углом опережения подачи топлива (φоп). Если впрыск осуществляется до прихода поршня в ВМТ, угол опережения имеет положительное значение, если после — отрицательное.

Запаздывание начала подачи форсунки относительно начала подачи насоса определяется в основном временем, необходимым на увеличение давления топлива в системе нагнетания от давления подкачки (Pпод = Pнпн) до давления начала подачи форсунки (Pнпф).

Поэтому чем больше объем системы, меньше остаточное давление Pост и сильнее затяг пружины, тем больше угол запаздывания подачи форсункой φзп.

Угловой промежуток между началом подачи форсункой и ВМТ двигателя называется динамическим углом опережения подачи по форсунке (φуоп).

Как видно из рисунка 5.18, в момент открытия форсунки на кривой Pф отмечается характерный провал, связанный с тем, что при поднятии иглы происходит увеличение объема подыголочного пространства. После постановки иглы на упор увеличение подыголочного пространства прекращается и Pост давления продолжается. Характерный провал присутствует и на диаграммах, приведенных на рисунке 5.17.

Совпадение отсечной кромки с разгрузочным отверстием (или открытие отсечного клапана) сопровождается резким падением давления Pн.

Нагнетательный клапан садится, и топливо под действием перепада давлений быстро перепускается в полость низкого давления. Этот момент соответствует концу подачи насоса (φкпн).

Угловой промежуток между началом и концом подачи называется продолжительностью подачи насоса φппн.

Через некоторое время волна падения давления Pн от насоса доходит до форсунки и дальнейший впрыск происходит только за счет расширения топлива, отчего давление Pф падает. Когда оно упадет до уровня давления Pкпф, игла распылителя садится на седло (φкпф). Угловой промежуток между началом и концом подачи топлива форсункой называется продолжительностью подачи форсунки φппф.

Читайте также:  Дастер плавают обороты на холодном двигателе как устранить

Из рисунка 5.18 видно, что давление Pф к концу подачи топлива форсункой меньше, чем в момент начала подачи. Это явление называется дифференциальным эффектом иглы.

Объясняется оно тем, что в момент открытия форсунки давление в полости распылителя действует только на часть торцевой поверхности игольчатого клапана, не прижатую к седлу, создавая меньшую силу, чем когда игла открыта и давление действует на всю ее торцевую поверхность.

При регулировании ТНВД по началу подачи с уменьшением нагрузки двигателя фаза подачи насосом все больше сдвигается на участок снижения скорости плунжера. Это приводит к нарушению баланса между подачами насоса и форсунки.

При снижении оборотов на малых ходах подача насоса становится настолько вялой, что игла форсунки садится на место раньше, чем закончится активный ход плунжера.

Именно по этой причине такой способ регулирования в чистом виде на судовых дизелях практически не применяется.

При регулировании ТНВД по концу подачи, в момент отсечки, давление резко падает и через еще поднятый нагнетательный клапан, расположенный в насосе, формируется обратный поток топлива. Закрытие клапана сопровождается гидравлическим ударом, от которого возникают волны давления, идущие к форсунке.

За счет энергии этих волн игла форсунки может продолжать стоять на упоре, затягивая впрыск тем дольше, чем больше цикловая подача. В случае, когда к моменту прихода волны игольчатый клапан уже закрылся, волна может открыть его повторно.

Если давление во фронте волны превысит давление открытия форсунки, произойдет подвпрыск.

Из рисунка 5.18 видно, что по мере подъема плунжера давление перед распылителем сначала возрастает от давления начала подачи форсункой Pнпф до некоторого максимума Pmaxф , а затем падает до давления конца подачи форсункой Pкпф.

Учитывая переменный характер давления в системе, под термином давление впрыска принято подразумевать максимальное давление перед распылителем: Pвпр = Pmaxф . Именно уровень Pmaxф определяет гидравлические нагрузки на элементы линий высокого давления и места их соединений, т. е. в конечном счете надежность работы топливной аппаратуры.

На протяжении последних лет наблюдается устойчивая тенденция повышения давления впрыска с целью сокращения периода впрыскивания и улучшения качества распыливания топлива, что в конечном счете обеспечивает повышение экономичности дизелей. У современных судовых дизелей давление впрыска лежит в пределах 60…200 МПа, а в некоторых случаях может доходить до 250 МПа.

Продолжительность впрыска определяется моментами подъема и посадки иглы форсунки (линия h, рис 5.18). У судовых дизелей она составляет φф = 20…40° ПКВ.

Как было показано выше (формула (5.12)), характер изменения давления впрыска зависит от конструктивных и эксплуатационных параметров элементов системы топливоподачи, от режима их работы и физических свойств топлива.

  • К конструктивным параметрам в первую очередь относится скорость подъема плунжера c = dhп/dφ, которая для систем с гидравлическим приводом зависит от скорости поступления управляющего масла в полость гидравлического цилиндра, а для систем с механическим приводом — от профиля кулачковой шайбы топливного насоса.
  • При механическом приводе ТНВД выбор профиля топливного кулачка осуществляется на основе расчетов основных геометрических размеров топливной аппаратуры и кинематической характеристики плунжера топливного насоса (средней скорости плунжера cm на участке геометрического полезного хода плунжера).
  • К числу основных относятся параметры, обеспечивающие заданные характеристики впрыска топлива по продолжительности подачи: геометрические размеры рабочего профиля топливного кулачка, угол подъема и величина полного подъема профиля.

В судовых дизелях наиболее часто используются профили топливных кулачков, определяющие трапецеидальный и треугольный или близкие к ним законы изменения скорости плунжера в зависимости от угла поворота кулачкового вала (рис. 5.19).

Первый из указанных профилей (рис. 5.

19а) характеризуется неизменной скоростью плунжера в процессе впрыска топлива, что создает определенные удобства при регулировании топливной аппаратуры на двигателе по опережению впрыска. Второй (рис. 5.

19б) позволяет получить наибольшую среднюю скорость плунжера на участке его активного хода и в максимальной степени использовать заданный полный подъем профиля топливного кулачка.

Давление во всех форсунках дизельного двигателя

Достаточно часты случаи, когда в качестве рабочей используется только участок восходящей ветви скорости (рис. 5.19в).

Средние скорости плунжеров для профилей топливных кулачков с треугольным законом изменения скорости при прочих равных условиях на 6…12% выше.

Допустимое ускорение плунжера обычно лежит в пределах 200…400 м/с2, а в отдельных случаях оно может достигать величины 500 м/с2 и более.

Величина ускорения является исходной для выбора плунжерной пружины, которая должна обеспечивать постоянный контакт ролика толкателя с профилем топливного кулачка.

На практике достаточно часто для обеспечения заданных параметров впрыска применяют несимметричные законы изменения скорости плунжера, при которых наибольшая скорость достигается на участке, когда подъем плунжера осуществляется средним, наиболее крутым участком профиля кулачковой шайбы. В этот период давление впрыска достигает своего максимума, обеспечивая высокое качество распыливания.

На рисунке 5.

20 приведены диаграммы скорости и перемещения плунжера ТНВД для случая, когда период подачи топлива насосом (геометрический период подачи) φ2 приходится на участок высоких значений скорости плунжера c.

Отсечка при высокой скорости плунжера в конце подачи обеспечивает резкое падение давления впрыска и резкую посадку иглы форсунки. Период впрыска при низких значениях Pф перед посадкой иглы непродолжителен.

Давление во всех форсунках дизельного двигателя

При эксплуатации дизелей для настройки топливной аппаратуры непосредственного действия с механическим приводом используют статические фазы топливоподачи насоса, которые еще называют геометрическими. Эти фазы доступны для контроля и регулирования без применения специальной аппаратуры.

Чтобы обеспечить заданные действительные фазы впрыска топлива форсункой, необходимо установить такие геометрические фазы подачи топлива, которые учитывали бы гидродинамические свойства системы топливоподачи. Для удобства анализа процесс топливоподачи разбивают на отдельные периоды.

Исходя из сказанного выше, таких периодов можно выделить три (рис. 5.18):

  • 1) период задержки впрыска (φзп)— угловой промежуток между началом подачи насосом и началом подачи форсункой, обусловленный сжимаемостью топлива, упругостью нагнетательного трубопровода, конечной скоростью распространения волны давления в нем, остаточным давлением в трубопроводе pост и давлением открытия иглы Pнпф. По опытным данным, у судовых малооборотных дизелей продолжительность периода составляет 2…19° ПКВ;
  • 2) период активного впрыска — угловой промежуток между началом подачи форсункой (φнпф) до конца подачи насосом (φкпн), в течение которого в цилиндр впрыскивается основная часть цикловой порции топлива. Продолжительность его зависит от нагрузки дизеля. Характер изменения давления в течение периода активного впрыска в значительной степени зависит от скорости подъема плунжера ТНВД;
  • 3) период свободного истечения — угловой промежуток от конца подачи насосом (φкпн) и до конца подачи форсункой (φкпф). Процесс впрыска происходит за счет энергии сжатого топлива и упругости нагнетательного трубопровода. Впрыск топлива происходит при постепенно снижающемся давлении Pф, что обусловливает ухудшение качества распыливания. Топливо в этот период впрыскивается уже на линии расширения в цилиндре, что приводит к увеличению продолжительности догорания топлива и снижению экономичности дизеля.
Ссылка на основную публикацию
Adblock
detector