В каком году придумали ракетный двигатель

В каком году придумали ракетный двигатель В каком году придумали ракетный двигатель Курс валют предоставлен сайтом old.kurs.com.ru
Diletant. media и «Ростех» вспоминают людей, которые заставили ракеты летать.

Истоки

«Ракета сама собой не полетит» — эту фразу приписывают многим известным ученым. И Сергею Королеву, и Вернеру фон Брауну, и Константину Циолковскому. Считается, что идею полета ракеты сформулировал чуть ли ни сам Архимед, но даже он не представлял себе как заставить ее полететь. В каком году придумали ракетный двигатель Константин Циолковский К настоящему времени существует много разновидностей ракетных двигателей. Химические, ядерные, электрические, даже плазменные. Впрочем, ракеты появились задолго до того, как человек изобрел первый двигатель. Слова «ядерный синтез» или «химическая реакция» едва ли говорили что-то жителям Древнего Китая. А ведь ракеты появились именно там. Точную дату назвать сложно, но, предположительно, произошло это в годы правления династии Хань (III-II вв. до н. э.). К тем временам относятся и первые упоминания о порохе. Ракета, которая поднималась вверх благодаря силе, возникшей при взрыве пороха, использовалась в те времена исключительно в мирных целях — для фейерверков. Ракеты эти, что характерно, имели собственный запас горючего, в данном случае, пороха.

Следующий шаг был сделан только в 1556 году немецким изобретателем Конрадом Хаасом, который был специалистом по огнестрельному оружию в армии Фердинанда I — Императора Священной Римской Империи. Хаас считается создателем первой боевой ракеты. Хотя, строго говоря, изобретатель не создал ее, а лишь заложил теоретические основы. Именно Хаасу принадлежала идея многоступенчатой ракеты.

В каком году придумали ракетный двигатель Многоступенчатая ракета в представлении Конрада Хааса

Ученый подробным образом описал механизм создания летательного аппарата из двух ракет, которые разделялись бы в полете. «Такой аппарат, — уверял он, — мог бы развивать огромную скорость». Идеи Хааса вскоре развил польский генерал Казимир Семенович.

В каком году придумали ракетный двигатель Титульный лист книги, в которой Казимир Семенович описал ракеты

В 1650 году он предложил проект создания трехступенчатой ракеты. В жизнь, впрочем, эта идея воплощена так и не была. То есть, конечно, была, но только в ХХ веке, через несколько столетий после смерти Семеновича.

Ракеты в армии

Военные, разумеется, никогда не упустят возможность принять на вооружение новый вид разрушительного оружия. В XIX веке у них появилась возможность применить в бою ракету. В 1805 году британский офицер Уильям Конгрив продемонстрировал в Королевском Арсенале созданные им пороховые ракеты небывалой по тем временам мощности.

Существует предположение, что большинство идей Конгрив «украл» у ирландского националиста Роберта Эммета, применившего некое подобие ракеты во время восстания 1803 года. Спорить на эту тему можно вечно, но тем не менее ракета, которую взяли на вооружение британские войска, называется ракетой Конгрива, а не ракетой Эммета.

В каком году придумали ракетный двигатель Запуск Ракеты Конгрива, 1890

Оружие многократно применялось во время Наполеоновских войн. В России пионером ракетостроения считается генерал-лейтенант Александр Засядко.

В каком году придумали ракетный двигатель Александр Засядко

Он не только усовершенствовал ракету Конгрива, но и задумался над тем, что энергию этого разрушительного оружия можно было бы использовать и в мирных целях. Засядко, например, первым высказал идею, что с помощью ракеты можно было бы совершить полет в космос. Инженер даже точно подсчитал, сколько пороха понадобиться, чтобы ракета достигла Луны.

На ракете — в космос

Идеи Засядко легли в основу многих работ Константина Циолковского. Этот знаменитый ученый и изобретатель теоретически обосновал возможность полета в космос при помощи ракетных технологий. Правда, в качестве топлива он предлагал использовать не порох, а смесь жидкого кислорода с жидким водородом. Аналогичные идеи высказывал младший современник Циолковского Герман Оберт.

В каком году придумали ракетный двигатель Герман Оберт

Он также разрабатывал идею межпланетных перелетов. Оберт прекрасно понимал сложность задачи, но его работы вовсе не носили фантастический характер. Ученый, в частности, предложил идею ракетного двигателя. Он даже проводил экспериментальные испытания подобных устройств.

В 1928 году Оберт познакомился с молодым студентом Вернером фон Брауном. Этому юному физику из Берлина в скором времени предстояло совершить прорыв в ракетостроении и воплотить в жизнь многие идеи Оберта.

Но об этом позже, ибо за два года до встречи двух этих ученых была запущена первая в истории ракета на жидком топливе.

Эра ракетостроения

Произошло это знаменательное событие 16 марта 1926 года. А главным героем стал американский физик и инженер Роберт Годдард. Еще в 1914 году он запатентовал многоступенчатую ракету. Вскоре ему удалось воплотить в жизнь идею, предложенную Хаасом почти за четыреста лет до этого.

В качестве топлива Годдард предлагал использовать бензин и оксид азота. После серии неудачных запусков, он добился успеха. 16 марта 1926 года на ферме своей тетушки Годдард запустил в небо ракету размером с человеческую руку. За две с небольшим секунды она взлетела в воздух на 12 метров.

Любопытно, что позднее на основе трудов Годдарда будет создана Базука.

В каком году придумали ракетный двигатель Роберт Годдард и его ракета

Открытия Годдарда, Оберта и Циолковского имели большой резонанс. В США, Германии и Советском Союзе стали стихийно возникать общества любителей ракетостроения. В СССР уже в 1933 году был создан Реактивный институт. В том же году появился и принципиально новый тип оружия — реактивные снаряды. Установка для их запуска вошла в историю под именем «Катюша».

В каком году придумали ракетный двигатель Залп «Катюш»

В Германии развитием идей Оберта занимался уже знакомый нам Вернер фон Браун. Он создавал ракеты для германской армии и не оставил этого занятия после прихода к власти нацистов. Более того, Браун получил от них баснословное финансирование и неограниченные возможности для работы.

Вернер фон Браун с моделью «Фау-2» в руках

При создании новых ракет использовался рабский труд. Известно, что Браун пытался протестовать против этого, но получил в ответ угрозу, что сам может оказаться на месте подневольных работников. Так была создана баллистическая ракета, появление которой предсказал еще Циолковский. Первые испытания прошли в 1942 году.

В 1944-м баллистическая ракета дальнего действия «Фау-2» была принята на вооружение Вермахтом. С ее помощью обстреливали, в основном, территорию Великобритании (до Лондона с территории Германии ракета долетала за 6 минут). «Фау-2» несла страшные разрушения и вселяла страх в сердца людей. Ее жертвами стали как минимум 2700 мирных жителей Туманного Альбиона.

В британской прессе «Фау-2» именовали «крылатым ужасом».

После войны

Американские и советские военные с 1944 года вели «охоту» за Брауном. Обе страны были заинтересованы в его идеях и разработках. Ключевую роль в решении этого вопроса сыграл сам ученый.

Еще весной 1945 он собрал свою команду на совет, на котором решался вопрос о том, кому по окончании войны лучше сдаться в плен. Ученые пришли к выводу, что сдаваться лучше американцам. Сам Браун оказался в плену почти случайно.

Его брат Магнус, увидев американского военного, подбежал к нему и сказал: «Меня зовут Магнус фон Браун, мой брат изобрел «Фау-2», мы хотим сдаться».

В США Вернер фон Браун продолжил работу над ракетами. Теперь однако он трудился в основном для мирных целей. Именно он дал колоссальный толчок к развитию американской космической отросли, сконструировав для США первые ракеты-носители (разумеется, создавал Браун и боевые баллистические ракеты).

Его команда в феврале 1958 запустила в космос первый американский искусственный спутник Земли. Советский Союз опередил США с запуском спутника почти на полгода. 4 октября 1957 года на орбиту Земли был выведен первый искусственный спутник.

При его запуске была использована советская ракета Р-7, созданная Сергеем Королевым.

Сергей Королев

Р-7 стала первой в мире межконтинентальной баллистической ракетой, а также первой ракетой, использованной для космического полета.

Ракетные двигатели в России

В 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти.

Авиационные двигатели создавались тут и в 1930-е, и в 1940-е, военные, годы. Моторы, которые производились на «Икаре», ставились на передовые советские самолеты.

А уже в 1950-е предприятие стало выпускать турборакетные двигатели, в том числе и для космической отрасли.

Сейчас завод принадлежит ОАО «Кузнецов», которое получило свое название в честь выдающегося советского авиаконструктора Николая Дмитриевича Кузнецова. Предприятие входит в структуру госкорпорации «Ростех».

Современное состояние

«Ростех» продолжает выпуск ракетных двигателей, в том числе и для ракетной отрасли. В последние годы объемы производства растут. В прошлом году появилась информация о том, что заказов на производство двигателей «Кузнецов» получил аж на 20 лет вперед. Двигатели создаются не только для космической отрасли, но также для авиации, энергетики и грузовых железнодорожных перевозок.

В 2012-м «Ростехом» были проведены испытания лунного двигателя. Специалистам удалось возродить технологии, которые создавались для советской лунной программы. Сама программа, как мы знаем, в итоге была свернута. Но забытые, вроде бы, наработки теперь обрели новую жизнь. Ожидается, что лунный двигатель получит широкое применение в российской космической программе.

Оригинал

Ракетные двигатели | Техника и человек

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива.

Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива.

Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

В каком году придумали ракетный двигатель

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

В каком году придумали ракетный двигатель

Виды химических двигателей

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты.

В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу.

Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу.

Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Читайте также:  Stels vortex 150 тюнинг двигателя

В каком году придумали ракетный двигатель

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР.

Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет.

В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания.

Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу.

Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении.

Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

В каком году придумали ракетный двигатель

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

В каком году придумали ракетный двигатель

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания.

Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД.

Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах.

Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию.

Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе.

В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения.

В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

В каком году придумали ракетный двигатель

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с.

Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами.

Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

В каком году придумали ракетный двигатель

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания.

Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге.

В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой.

В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма.

Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

  • В каком году придумали ракетный двигатель
  • Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.
  • Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи.

Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах.

Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

В каком году придумали ракетный двигатель

Космические моторы. Главные разработки Валентина Глушко, известные на весь мир

О двигателях и других изобретениях, созданных под руководством знаменитого конструктора ракетно-космической техники, — в материале ТАСС

2 сентября исполнилось 110 лет со дня рождения инженера, ученого и конструктора, занимавшегося разработкой ракетных двигателей и космических систем, — Валентина Петровича Глушко.

При его непосредственном участии был разработан целый ряд двигателей, на которых до сегодняшнего дня летают космические носители «Союз» и «Протон», а также межконтинентальная баллистическая ракета «Воевода», которая известна на Западе как «Сатана».

ТАСС собрал главные изобретения знаменитого конструктора ракетно-космической техники.

Первый электрический реактивный двигатель

Под руководством Глушко был разработан первый в мире электротермический реактивный двигатель. Опытный образец был создан в СССР — в Газодинамической лаборатории в Ленинграде, которой заведовал Глушко, в 1929 году.

Читайте также:  Ford focus 2 лампочка неисправность двигателя

Спецпроект на тему

В каком году придумали ракетный двигатель

В двигателе в камеру сгорания устанавливались специальные проводники (из железа, палладия других металлов), на эти проводники подавались кратковременные, но мощные импульсы электрического тока с определенной частотой.

Сам процесс назывался «электрическим взрывом» — при прохождении разряда проводники в прямом смысле разрушались, выделяя водород, который истекал из сопла двигателя и создавал тягу.

Позже работы по этим двигателям были свернуты из-за низкой мощности.

Впервые в советской космической промышленности электрореактивные двигатели (ЭРД), но с иным принципом, были применены значительно позже — в 1964 году в космос был отправлен спутник «Зонд-2», с шестью установленными плазменными двигателями ориентации.

В современной космической технике применяются различные ЭРД, например, ионный (ионизированный газ разгоняется в электрическом поле).

Такие модели, как и первый двигатель Глушко, имеют малую тягу, но могут работать за счет низкого расхода рабочего тела чрезвычайно долго — до нескольких лет.

В качестве маршевого ЭРД был, например, установлен на японском космическом аппарате «Хаябуса», запущенном для изучения астероида Итокава. ЭРД широко применяются на спутниках в качестве двигателей коррекции траектории.

Первые в СССР жидкостные ракетные двигатели

Под руководством Глушко после завершения работ по ЭРД впервые в отечественной космической промышленности была создана целая серия опытных ракетных двигателей, работающих на жидком топливе. Серия называлась ОРМ — опытные ракетные моторы. В качестве топлива в двигателях серии использовались керосин, бензин, толуол, другие вещества.

Советские ученые экспериментировали как со смешанными унитарными, так и с двухкомпонентными топливами.

Первые образцы, работавшие на унитарном топливе (ОРМ-1 тягой всего 20 кгс), были крайне несовершенны и терпели отказы, вплоть до аварийных ситуаций — двигатели взрывались на стендах во время работы.

В итоге был сделан выбор в пользу более безопасной двухкомпонентной схемы — отдельные баки для горючего, отдельные для окислителя.

На эту тему

В каком году придумали ракетный двигатель

Работы над двигателями серии ОРМ Газодинамическая лаборатория начала в 1930-х годах, и к 1933-му был создан достаточно мощный образец ОРМ-52 с тягой 300 кгс. Под этот двигатель был разработан целый ряд реактивных летательных аппаратов («РЛА-1», «РЛА-2» и так далее), но их образцы «в железе» не создавались.

По задумке инженеров, РЛА должны были взлетать на высоту нескольких километров и выбрасывать контейнер с метеоаппаратурой, которая затем опускалась бы на землю на парашюте. ОРМ-52 прошел официальные государственные испытания, правда, только на стенде.

На одном из запусков образца двигателя в 1933 году присутствовал начальник вооружения Красной Армии маршал Михаил Тухачевский и дал работе лаборатории Глушко положительную оценку.

В 1934 году коллектив Газодинамической лаборатории из Ленинграда был объединен с московской группой изучения реактивного движения (под руководством Сергея Павловича Королева) в Реактивный научно-исследовательский институт. Ученые совместными усилиями продолжили разработку двигателей и носителей под них.

Коллектив Глушко создал образцы с номерами от ОРМ-53 до ОРМ-102. В частности, двигатель ОРМ-65 разработки Глушко ставился на созданную Королевым крылатую ракету — «объект 212». В 1939 году прошли ее испытания — ракета с ОРМ-65 достигла высоты 250 м, когда преждевременно раскрылся ее парашют.

Двигатель ОРМ-65 работал на азотной кислоте и керосине, развивал тягу 150 кгс и мог работать до 80 секунд.

Двигатели для баллистических и космических ракет

С 1946 года Глушко был назначен главным конструктором ОКБ-456 в Химках (сейчас НПО «Энергомаш» — главный разработчик и производитель российских ракетных двигателей — прим. ТАСС). Здесь под его руководством созданы двигатели для первых советских баллистических ракет Р-1, Р-2 и Р-5.

В 1954–1957 годах коллектив ОКБ-456 разработал жидкостные ракетные двигатели РД-107, которые впоследствии будут устанавливаться на знаменитую ракету Р-7, сконструированную коллективом ОКБ-1 под руководством Королева, так называемую королевскую семерку.

Это была первая в мире полноценная межконтинентальная баллистическая ракета с максимальной дальностью полета 8 тыс. км и одним термоядерным зарядом мощностью 3 мегатонны.

Первый запуск Р-7 состоялся 15 мая 1957 года, на вооружение Ракетных войск стратегического назначения она была принята в январе 1960-го.

В каком году придумали ракетный двигатель

Жидкостный ракетный двигатель «РД-107» бокового блока ракеты-носителя «Восток»

© Черединцев Валентин/ТАСС

На базе Р-7 был создано целое семейство ракет космического назначения. В частности, знаменитый «Восток», на котором 12 апреля 1961 года в космос отправился Юрий Гагарин.

Модификации этой ракеты используются до сих пор — с грузовыми кораблями и спутниками в космос стартуют ракеты серии «Союз-2», с пилотируемыми — «Союз-ФГ» (со следующего года запуски космонавтов будут переведены на «Союз-2»).

До сих пор на этих ракетах используются модификации двигателей, разработанных Глушко: версии РД-107 для боковых и центрального блока первой ступени и варианты РД-108 — для второй ступени.

Также сотрудники ОКБ-456 под руководством Глушко создали двигатель РД-253, который с изменениями и сейчас используется в самой массовой серии советских и российских тяжелых грузовых ракет «Протон». Последний вариант — «Протон-М» — использует на первой ступени шесть двигателей РД-276, которые являются глубокой модернизацией РД-253 Глушко.

На эту тему

В каком году придумали ракетный двигатель

Параллельно известный конструктор работал над двигателями для советских баллистических ракет, появившихся после Р-7. В частности, самая мощная на сегодняшний день и стоящая на вооружении РВСН тяжелая межконтинентальная ракета «Воевода» использует на первой ступени двигатель РД-264, разработанный при непосредственном участии Глушко.

«Энергия  Буран»

В 1974 году было создано НПО «Энергия» (сейчас Ракетно-космическая корпорация «Энергия»), в новую организацию вошло Центральное конструкторское бюро машиностроения (ОКБ-1, переименованное так после смерти Королева), а также КБ «Энергомаш» (бывшее ОКБ-456). Глушко стал главным конструктором «Энергии», название которой, по некоторым данным, он и придумал.

Несмотря на все его усилия, НПО «Энергия» не получило заказ от государства на разработку двигателей под ракету сверхтяжелого класса Н-1 для советской лунной программы. Идеи конструктора были отклонены из-за токсичности предложенных им компонентов топлива.

Позже он в своих письмах не оставляет планов покорения Луны, в частности, предлагает руководству страны в течение десяти лет разработать и создать систему доставки космонавтов к естественному спутнику Земли и орбитальный лунный модуль весом 60 тонн, который обеспечит высадку на Луну трех космонавтов.

Однако этим планам не суждено сбыться.

В каком году придумали ракетный двигатель

Универсальная ракетно-космическая транспортная система «Энергия» с орбитальным кораблем многоразового использования «Буран» на стартовом комплексе космодрома Байконур, 1988 год

© Альберт Пушкарев/ТАСС

В 1976 году внимание Глушко переключается на совсем другую тему — создание челнока «Буран» как ответа на запуски американских многоразовых кораблей «Спейс Шаттл».

Отечественная многоразовая система «Энергия — Буран» создавалась под непосредственным руководством Глушко и по его проекту, именно он настоял на облике сверхтяжелой ракеты «Энергия» и предложил вид двигателя первой ступени РД-170.

Успешный запуск «Бурана» прошел в ноябре 1988 года в автоматическом режиме.

Кроме двигателей, под руководством Глушко был выполнен ряд ключевых работ по направлению пилотируемой космонавтики.

Так, конструктор возглавлял работы по совершенствованию пилотируемых космических кораблей «Союз», им была предложена концепция многомодульной станции «Мир»: НПО «Энергия» выдвинула свои предложения по созданию новых орбитальных станций в 1976 году, эскизный проект «Мира» был готов в 1978 году.

Подготовила Валерия Решетникова

РЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ

Авторы: М. Ю. Куприков

РЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ, двигатель, создающий необходимую для движения силу тяги путём преобразования потенциальной энергии в кинетическую энергию реактивной струи рабочего тела.

Под рабочим телом, применительно к двигателям, понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при сгорании топлива, преобразуется в полезную механическую работу.

В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, направленной  в пространстве в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в реактивном двигателе могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная).

Реактивный двигатель (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги (тяги двигателя), используемой реактивным двигателем, необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из реактивного двигателя; сам реактивный двигатель – преобразователь энергии.

Тяга двигателя – это реактивная сила, являющаяся результирующей газодинамических сил давления и трения, приложенных к внутренним и наружным поверхностям двигателя.

Различают внутреннюю тягу (реактивную тягу) – результирующую всех газодинамических сил, приложенных к двигателю, без учёта внешнего сопротивления и эффективную тягу, учитывающую внешнее сопротивление силовой установки. Исходная энергия запасается на борту летательного или другого аппарата, оснащённого реактивным двигателем (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца).

Для получения рабочего тела в реактивном двигателе может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере реактивного двигателя; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных реактивных двигателях в качестве первичной энергии чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы – продукты сгорания химического топлива. При работе реактивного двигателя химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. 

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора).

Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом.

Читайте также:  Opel tigra a какой двигатель

Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом.

Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет.

После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700 °С), её необходимо постоянно интенсивно охлаждать.

Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях.

В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель.

Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя.

Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха.

Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды.

К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД.

Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Основным техническим параметром, характеризующим реактивный двигатель, является тяга – усилие, которое развивает двигатель в направлении движения аппарата, удельный импульс – отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 с, или идентичная характеристика – удельный расход топлива (количество топлива, расходуемого за 1 с на 1 Н развиваемой реактивным двигателем тяги), удельная масса двигателя (масса реактивного двигателя в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов реактивных двигателей важными характеристиками являются габариты и ресурс. Удельный импульс является показателем степени совершенства или качества двигателя. В приведённой диаграмме (рис. 2) в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей в зависимости от скорости полёта, выраженной в форме Маха числа, что позволяет видеть область применимости каждого типа двигателей. Этот показатель является также мерой экономичности двигателя.

Тяга – сила, с которой реактивный двигатель воздействует на аппарат, оснащённый этим двигателем, — определяется по формуле: $$P = mW_c + F_c (p_c – p_n),$$ где $m$ – массовый расход (расход массы) рабочего тела за 1 с; $W_c$ – скорость рабочего тела в сечении сопла; $F_c$ – площадь выходного сечения сопла; $p_c$ – давление газов в сечении сопла; $p_n$ – давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга реактивного двигателя зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащённого реактивным двигателем, над уровнем моря, если рассматривается полёт в атмосфере Земли. Удельный импульс реактивного двигателя прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Поскольку скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями двигателя, являясь постоянной величиной при не очень больших изменениях режима работы реактивного двигателя, то величина реактивной силы определяется в основном массовым секундным расходом топлива и колеблется в очень широких пределах (минимум у электрических – максимум у жидкостных и твердотопливных ракетных двигателей). Реактивные двигатели малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости.

ВРД используют  в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Разные схемы  позволили их применять для ЛА эксплуатирующихся на разных режимах полёта.

Широко применяются турбореактивные двигатели (ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания.

В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Значительно проще по конструкции бескомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами; это пульсирующие и прямоточные двигатели.

В пульсирующем воздушно-реактивном двигателе (ПуВРД)  для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя.

Вследствие этого давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.

В бескомпрессорном двигателе другого типа, прямоточном воздушно-реактивном (ПВРД), нет даже и этой клапанной решётки и атмосферный воздух, попадая во входное устройство двигателя со скоростью, равной скорости полёта, сжимается за счёт скоростного напора и поступает в камеру сгорания.

Впрыскиваемое топливо сгорает, повышается теплосодержание потока, который истекает через реактивное сопло со скоростью, большей скорости полёта. За счёт этого и создаётся реактивная тяга ПВРД. Основным недостатком ПВРД является неспособность самостоятельно обеспечить взлёт и разгон летательного аппарата (ЛА).

Требуется сначала разогнать ЛА до скорости, при которой запускается ПВРД и обеспечивается его устойчивая работа. Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Принцип реактивного движения известен давно. Родоначальником реактивного двигателя можно считать шар Герона. Твердотопливные ракетные двигатели (РДТТ – ракетный двигатель твёрдого топлива) – пороховые ракеты появились в Китае в 10 в. н. э.

На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата.

Её впервые сформулировал русский революционер-народоволец Н. И. Кибальчич, который в марте 1881, незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

РДТТ применяют во всех классах ракет военного назначения (баллистических, зенитных, противотанковых и др.), в космической (например, в качестве стартовых и маршевых двигателей) и авиационной технике (ускорители взлёта самолётов, в системах катапультирования) и др.

Небольшие твердотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Первый патент на газотурбинный двигатель (ГТД) был выдан англичанину Дж. Барберу в 1791. Российский инженер П. Д. Кузьминский в 1900 построил ГТД (применил многоступенчатую газовую турбину) для небольшого катера.

Ссылка на основную публикацию
Adblock
detector