Время пуска асинхронного двигателя на холостом ходу

Дмитрий Левкин

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

Вращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

Время пуска асинхронного двигателя на холостом ходу

  • где n1 – частота вращения магнитного поля статора, об/мин,
  • f1 – частота переменного тока, Гц,
  • p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Время пуска асинхронного двигателя на холостом ходу Время пуска асинхронного двигателя на холостом ходу Время пуска асинхронного двигателя на холостом ходу Магнитное поле создаваемое трехфазным током в разный момент времени Время пуска асинхронного двигателя на холостом ходу Ток протекающий в витках электродвигателя (сдвиг 60°) Вращающееся магнитное поле

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике.

В свою очередь ЭДС вызовет ток в проводнике.

Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Время пуска асинхронного двигателя на холостом ходу Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Время пуска асинхронного двигателя на холостом ходу Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться.

На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля.

Изменение тока в стержнях будет изменяться со временем.

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2

Пуск асинхронного двигателя

Все асинхронные двигатели должны самостоятельно пускаться в ход, т. е. разгоняться от неподвижного состояния (n=0, s=l) до номинальной частоты вращения (n=nном, s=sном), преодолевая при этом момент сопротивления нагрузки.

Разгон двигателя должен происходить достаточно быстро, чтобы потери, выделяемые в нем при пуске, не приводили к недопустимо большому перегреву обмоток (в зоне скольжения от 1 до sкр по обмоткам двигателя проходят токи, существенно большие номинального).

Помимо статического момента сопротивления Мс, определяемого механической характеристикой приводного механизма, при пуске двигатель преодолевает и динамический момент Mдин=Jdω/dt (где J — момент инерции ротора двигателя и самого механизма, dω/dt=a — ускорение при пуске).

При неизменном ускорении время пуска асинхронного двигателяможно определить по формуле tп≈ωном/а, а в общем случае

что следует из общего уравнения движения ротора

Jdω/dt=M—Mс.      (52)

Входящие в (51), (52) величины имеют следующие размерности: М, Мс — Н∙м; J — кг∙м2; dω/dt — 1/с2.

Пуск проводится успешно, если М>Мс во время разгона, а время пуска тем меньше, чем больше разность между электромагнитным моментом двигателя М и моментом сопротивления Мс.

Таким образом, чем больший момент развивает асинхронный двигатель при пуске, тем меньше время пуска, выделяемая во время пуска энергия потерь в обмотках и соответственно перегрев обмоток.

Если момент сопротивления (нагрузки) больше момента, развиваемого двигателем, то пуск асинхронного двигателя вообще оказывается невозможным.

Рассмотрение условий пуска начнем с двигателей с фазным ротором. У этих двигателей, как уже отмечалось, можно вводить в цепь ротора добавочное сопротивление. При введении в цепь ротора добавочного активного сопротивления (резистора) при номинальном (полном) напряжении сети механическая характеристика двигателя изменяется (рис. 22).

Анализ формул (44), (45) показывает, что введение добавочного сопротивления Rд приводит к увеличению лишь критического скольжения sкр при неизменном моменте. Если введением Rд добиться такого положения, что sкр=l, то в этом случае пусковой момент будет равен максимальному, а пусковой ток снизится по сравнению с пуском при замкнутом накоротко роторе примерное 2 раза.

Само добавочное сопротивление при этом равно:

Rд=Rд3≈х1+х'2               (53)

Если оставить Rд=Rд3 неизменным, то пуск асинхронного двигателя закончится в точке 4 при относительно малой частоте вращения n4.

Поэтому пусковой реостат имеет несколько ступеней (Rд3, Rд2, Rд1), и переключение ступеней происходит в точках пересечения механических характеристик (точки А, В, С на рис. 22).

Причем в точке С пусковой реостат закорачивается (Rд=0), и двигатель заканчивает разгон по своей собственной (естественной) характеристике, достигая частоты вращения n1 близкой к синхронной.

При выполнении своевременного переключения ступеней пускового  реостата в течение всего пуска момент двигателя остается существенно больше момента сопротивления Мс, т. е. пуск асинхронного двигателя происходит быстро и с малыми энергиями потерь в обмотках.

Время пуска асинхронного двигателя на холостом ходу

Рис. 22. Механические характеристики асинхронного двигателя при введении добавочного сопротивления в цепь ротора

Для двигателей с короткозамкнутой обмоткой ротора введение добавочного сопротивления в цепь ротора невозможно. Поэтому для пуска применяются другие способы:

  • прямой пуск,
  • пуск при пониженном напряжении питания.

Прямое включение асинхронного двигателя в сеть является наиболее простым способом пуска двигателя. В то же время в этом случае обмотки статора и ротора двигателя обтекаются большим пусковым током (током КЗ), равным 4—7-кратному значению номинального. Поэтому очень важно, чтобы время пуска двигателя было при этом как можно меньшим.

Из всех способов пуска асинхронных двигателей с короткозамкнутой обмоткой ротора при данном способе пуска создается наибольший вращающий момент.

Пусковой вращающий момент двигателя определяется при этом по формуле (48).

Поскольку он все же относительно невелик, данный способ пуска применяется для механизмов со средними и легкими условиями пуска (при малых моментах сопротивления и малых моментах инерции механизма).

Необходимо также иметь в виду, что большой ток, потребляемый двигателем, протекает не только по его обмоткам, но и по проводам сети и трансформатору.

Из-за этого в питающей сети создается падение напряжения, которое в случае пуска мощного двигателя может оказаться весьма значительным.

В результате напряжение, подводимое к двигателю в этом режиме, сильно понизится и это вызовет дополнительное снижение вращающего момента двигателя.

Поэтому прямое включение при пуске мощных двигателей допустимо при наличии сети достаточно мощной по сравнению с мощностью самого двигателя. В этом случае протекание по сети и трансформатору пусковых токов двигателя не приведет к значительному падению напряжения. Мощные современные системы энергоснабжения позволяют осуществить прямой пуск асинхронных двигателей до нескольких тысяч киловатт.

Пуск асинхронного двигателя при пониженном напряжении осуществляется обычно в тех случаях, когда прямой пуск не допускается по условиям работы сети. Обычно применяют один из четырех способов пуска при пониженном напряжении:

  • включение в цепь статора добавочного индуктивного сопротивления (дросселя);
  • включение двигателя через понижающий автотрансформатор;
  • переключение обмотки статора со звезды на треугольник;
  • включение двигателя через полупроводниковый регулятор напряжения.

Рассмотрим подробнее эти способы, отметив предварительно, что все они преследуют общую цель — уменьшение пускового тока. В соответствии со схемой замещения асинхронного двигателя (см. рис.

16) ток, потребляемый двигателем из сети, прямо пропорционален питающему напряжению.

Поэтому, задавая допустимую величину пускового тока (определяется условиями нормальной работы сети), можно определить допустимое значение напряжения питания при пуске (второй и четвертый способы) или величину добавочного сопротивления (первый способ).

Во всех этих случаях снижение напряжения ведет не только к пропорциональному уменьшению пускового тока (положительный эффект), но и к резкому (квадратичному) уменьшению пускового момента (отрицательный эффект).

Последнее обстоятельство вынуждает при использовании пуска при пониженном напряжении разгружать приводимые механизмы вплоть до полной разгрузки последних, т. е.

Читайте также:  Ваз 2110 не работают дворники а двигатель на дворники работает

производить пуск в режиме XX (Мс=0), с последующей загрузкой механизма.

Схема пуска асинхронного двигателя с включением в цепь статора добавочного индуктивного сопротивления L приведена на рис. 23,а.

При пуске вначале замыкается рубильник QSI и происходит пуск при пониженном напряжении.

Затем при достижении высокой частоты вращения, близкой к пкр, замыкают рубильник QS2, шунтируя сопротивление дросселя и обеспечивая окончание процесса пуска по естественной механической характеристике (см. рис. 21).

Время пуска асинхронного двигателя на холостом ходу

Рис. 23. Схемы пуска асинхронного двигателя: а — при последовательном включении индуктивного сопротивления L; б — при включении двигателя через автотрансформатор Т

Уменьшения напряжения при пуске можно достигать включением между сетью и двигателем понижающего автотрансформатора Т (рис. 23,б). При пуске сначала замыкают рубильник QSI, и пониженное напряжение попадает на обмотки двигателя.

По достижении ротором достаточной частоты вращения замыкают рубильник QS2, шунтируя автотрансформатор так, что полное напряжение сети попадает на обмотки двигателя.

Применение автотрансформатора позволяет ограничивать пусковой ток в питающей сети при меньшем снижении питающего двигатель напряжения, чем в случае включений индуктивного сопротивления. Следовательно, при этом в меньшей степени понижается пусковой момент двигателя.

К способам пуска с понижением напряжения можно отнести также пуск с переключением обмоток статора со звезды на треугольник (рис. 24).

В режиме пуска переключатель QS находится в положении 1, причем обмотка статора включена по схеме звезды.

После того как ротор достигнет установившейся частоты вращения, переключатель необходимо перевести в положение 2, и обмотки статора будут включены по схеме треугольника.

Время пуска асинхронного двигателя на холостом ходу

Рис. 24. Схема пуска двигателя с переключением обмоток со звезды на треугольник

При данном способе пуска фактически снижается напряжение, подводимое к каждой фазе двигателя, поскольку при одинаковом напряжении сети фазное напряжение в схеме звезды в √3 раз меньше, чем в схеме треугольника.

Пусковой ток в сети при соединении обмотки статора в звезду снижается в √3 раза по сравнению с пусковым током при соединении в треугольник.

Однако пусковой момент, пропорциональный квадрату напряжения, снижается в 3 раза.

Следует отметить, что этот последний способ не универсален в отличие от двух предыдущих. Как видно из описания процесса пуска, напряжению сети должна соответствовать рабочая схема соединения обмотки статора — треугольник, что не всегда выполняется.

Пусть асинхронный двигатель имеет рабочее напряжение по паспорту 220/380 В, напряжение питающей сети равно 380 В, а прямой пуск невозможен.

Можно ли использовать пуск с пониженным напряжением путем переключения обмотки статора со звезды на треугольник?

Поскольку номинальное напряжение двигателя 220/380 В, это означает, что двигатель может нормально работать при напряжении сети как 220 В, так и 380 В. В первом случае обмотка статора должна соединяться в треугольник, а во втором — в звезду.

Таким образом, напряжению питающей сети 380 В соответствует схема звезды, и пуск оказывается прямым (переключать обмотку в треугольник нельзя, так как в этом случае напряжение сети в 380/220 =√33 раз превысит номинальное).

В данном случае, если необходимо снизить пусковой ток, следует  применять  способ  включения дросселя  или  автотрансформатора.

Для целей понижения напряжения при пуске можно использовать также полупроводниковые регуляторы напряжения, применяемые для изменения частоты вращения.

При пуске напряжение с помощью регулятора плавно повышается от нуля, а при разгоне двигателя можно регулировать напряжение так, чтобы ток, потребляемый из сети, оставался неизменным и равным предельно допустимому.

В конце пуска при скорости, близкой к номинальной, управляемые вентили полностью открыты и двигатель работает при полном напряжении сети. В этом же случае оказывается возможным осуществить пуск при максимально возможном электромагнитном   моменте.

Для приводов с наиболее тяжелыми условиями пуска (большая нагрузка и большой момент инерции) следует использовать двигатели с фазной обмоткой ротора.

Введение сопротивления в цепь ротора (рис. 25) уменьшает ток, потреблявмый двигателем из сети. Изменяется также и критическое скольжение, с ростом активного сопротивления обмотки ротора оно увеличивается.

Механические характеристики двигателя при различной величине добавочного сопротивления Rд изображены на рис. 22. Остается неизменным лишь максимальный момент, развиваемый двигателем. Из рис. 22 видно, что при определенной величине Rд=Rд3≈х1+х'2 [см.

формулу (44)] критическое скольжение будет равно единице и пусковой момент будет равен максимальному.

Рис 25. Схема  асинхронного двигателя с введением резисторов в  цепь ротора

Таким образом, получается, что пуск при включении сопротивлений в цепь ротора принципиально отличается от пуска при пониженном напряжении тем, что при уменьшении пускового тока происходит увеличение (а не уменьшение) пускового момента.

В процессе пуска, последовательно уменьшая по мере увеличения частоты вращения двигателя сопротивление в цепи ротора, можно добиться того, чтобы весь процесс пуска проходил при вращающем моменте, близком к максимальному. Это позволяет получить возможно меньшее время пуска двигателя.

Пуск асинхронного двигателя

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

ПРЯМОЙ ПЛАВНЫЙ ЗВЕЗДА-ТРЕУГОЛЬНИК ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ

Время пуска асинхронного двигателя на холостом ходу

  • Асинхронные электрические двигатели с короткозамкнутым ротором благодаря своей крайней простоте получили широкое распространение, особенно в трехфазных сетях, где им не требуются дополнительные пусковые или смещенные по фазе обмотки.
  • При правильной эксплуатации асинхронный электродвигатель становится практически вечным – единственное, что в нем может потребовать замены, это подшипники ротора.
  • Однако ряд особенностей асинхронных двигателей определяет специфику их пускового режима: отсутствие обмотки якоря означает отсутствие противоЭДС индукции в момент включения обмоток статора, а следовательно – высокий пусковой ток.
  • Если для маломощных электрических двигателей это не критично, то в промышленных электродвигателях пусковые токи могут достигать очень высоких значений, что приводит к просадкам напряжения в сети, перегрузкам подстанций и электропроводки.

Прямой пуск асинхронного электродвигателя

Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.

  1. Основной проблемой прямого пуска становится подключение нескольких электродвигателей к маломощной подстанции или генератору.
  2. Включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.
  3. Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора.
  4. Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.
  5. Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя.
  6. В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.

Плавный пуск асинхронного электродвигателя

  • Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя.
  • Простейший и наиболее старый способ плавного пуска – реостатный пуск электродвигателя: в цепь статора последовательно включается несколько мощных резисторов, последовательно закорачиваемых контакторами.
  • Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.
  • Подобный способ плавного пуска имеет очевидные недостатки:
  • Проблематичность автоматизации.
  • Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.
  • Усложнение пуска под нагрузкой.

Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.

  1. Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов.
  2. Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:

Постоянное токоограничение.

В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает.

Формирование тока.

В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.

Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален. Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.

Ускоренный пуск (кик-старт).

Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.

В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.

Останов на выбеге.

При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.

Читайте также:  405 евро 3 двигатель работает неровно

Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.

Линейное снижение напряжения.

Применяется для более плавной остановки двигателя. Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.

Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.

Для снижения нагрузок при остановке применяется управляемое снижение напряжения:

  • вначале ток снижается минимально;
  • затем кривая начинает снижаться круче.

Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.

При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.

Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.

Пуск по схеме звезда-треугольник

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Время пуска асинхронного двигателя на холостом ходу

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

Пуск электродвигателя через частотный преобразователь

Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя. По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:

  • входное напряжение в нем выпрямляется;
  • затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.

Время пуска асинхронного двигателя на холостом ходу

Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.

Как осуществляется плавный пуск через частотный преобразователь?

В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения.

Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.

Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).

© 2012-2022 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

§78. Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей.

Холостой ход.

Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток.

Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться.

Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения.

Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке).

По обмотке статора проходит ток холостого хода I0, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора).

Для уменьшения тока I0 в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры.

Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие.

Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим.

Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается.

Но одновременно увеличивается частота n1— n персечения вращающимся полем проводников обмотки ротора, а следовательно, э. д. с. Е2, индуцированная в этой обмотке, ток в роторе I2 и образованный им электромагнитный вращающий момент М.

Этот процесс будет продолжаться до тех пор, пока электромагнитный момент двигателя M не сравняется с нагрузочным моментом Мвн.

При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки.

При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться.

Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

f2/f1 = (n1— n)/n1= s или f2 = f1s (83)

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cosφ1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260).

Время пуска асинхронного двигателя на холостом ходуРис. 260. Энергетическая диаграмма асинхронного двигателя

В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ΔРэл1 и ротора ΔРэл2, магнитные ΔРм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ΔРмх от трения в подшипниках и вращающихся частей о воздух.

Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.

Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cosφ2 (здесь φ2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора).

Поэтому

  • M = cмФтI2 cosφ2 (84)
  • где
  • Фт — амплитуда магнитного потока, созданного обмоткой статора;
  • — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников.

Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором.

Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем.

Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср.

Легко заметить, что к проводникам, лежащим на дуге, равной 180° — φ2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге φ2 — тормозящие силы.

Читайте также:  График характеристик двигателя ваз

Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол φ2. Электромагнитный момент М зависит от скольжения s.

Время пуска асинхронного двигателя на холостом ходуРис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cosφ2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

При s < 10-20% увеличение скольжения приводит к незначительному уменьшению cos φ2, вследствие чего активная составляющая тока в обмотке ротора I2cos φ2 и электромагнитный момент М возрастают.

При некотором критическом скольжении sкр двигатель развивает наибольший момент Мmax, который определяет его перегрузочную способность.

При дальнейшем увеличении скольжения (большем sкр) происходит резкое уменьшение cos ?2, поэтому активная составляющая тока I2cos φ2 и электромагнитный момент М уменьшаются.

Номинальный вращающий момент Мном двигатели средней и большой мощности развивают при скольжении Sном = 2-4%.

Согласно государственным стандартам на асинхронные двигатели отношение Mmax/Mном = 1,8-2,5. Критическое скольжение sкр для мощных двигателей составляет 5—10%, для двигателей средней и малой мощности — от 10 до 20 %.

Асинхронный двигатель, как и любая электрическая машина, может работать в генераторном режиме, создавая тормозной момент. Этот режим используется для электрического торможения приводов.

Режим пуска.

В начальный момент пуска ротор двигателя неподвижен: скольжение s=1, магнитное поле пересекает ротор с максимальной частотой, индуцируя в нем наибольшую э. д. с. Е2. Так как ток в роторе I2 определяется значением э. д. с. Е2, то в начальный момент пуска он будет наибольшим. Наибольшим будет и ток в статоре.

Обычно пусковой ток двигателя в 5—7 раз больше номинального. Вращающий момент Мп при пуске называется пусковым. Он обычно меньше наибольшего момента, который может развить двигатель. Для двигателей различных типов и мощностей отношение Мп/Мном = 0,7 – 1,8.

Режимы работы асинхронных двигателей

Лекция №19 Скольжение. Пуск асинхронных двигателей

Скольжение

Отличительным признаком асинхронного двигателя является всегда существующая положительная разность, n1 – n2> 0. Ротор никогда не может достигнуть частоты вращения магнитного поля n1, так как при равенстве n1= n2 исчезнут электромагнитные силы, приводящие его в движение.

  • Разность частот вращения магнитного поля и ротора
  • n1 – n2 = ns
  • называют частотой скольжения. Аналогичная разность скоростей
  • Ω1 – Ω2 = Ωs
  • Называется скоростью скольжения.
  • Отношение частоты скольжения к частоте вращения поля n1 обозначают sи называют скольжением:

Очевидно, что в первый момент пуска двигателя s = 1. Асинхронные двигатели проектируют так, что на холостом ходу sх = 0,001 ÷ 0,005, а при номинальной нагрузке sном = 0,05.

В установившемся режиме ns, Ωs и s – постоянные. Это означает, что вращающий момент двигателя М уравновешивает противодействующий момент Мпр.

Если по каким – либо причинам противодействующий момент увеличится, то ротор начнет тормозиться, т. е. скорость вращения Ω2 будет падать, а скорость его скольжения – увеличиваться. Но последнее вызовет изменение ряда взаимно связанных величин. Увеличатся Э.Д.С.

e2и токи I2в проводниках обмотки ротора, электромагнитные силы Fэм2 и вращающий момент М.

Когда вращающий момент М станет равным противодействующему Мпр, изменения прекратятся. Двигатель возвратится в установившейся режим. Но скорость вращения ротора Ω2 теперь меньше.

В случае уменьшения противодействующего момента произойдут аналогичные, но противоположно направленные физические процессы. Это означает, что асинхронный двигатель обладает свойством автоматического изменения вращающего момента, т. е. свойством саморегулирования.

Режимы работы асинхронных двигателей

Двигательный режим: Время пуска асинхронного двигателя на холостом ходу При n 1

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

Время пуска асинхронного двигателя на холостом ходу

Мн – номинальный момент; Мп – пусковой момент; Мmax – критический момент

Из анализа графика механической характеристики также следует, что устойчивая работа асинхронного двигателя возможна при скольжениях, меньших критического (s < sкр), т. Дело в том, что именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента.

Холостой ход электродвигателя

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.

Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.

Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу

Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту zakaz@cable.ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверку электродвигателя на холостом ходу производят при отсоединенном механизме. Если отсоединить механизм нельзя, то проводится проверка при ненагруженном механизме. Продолжительность проверки — 1 ч.

При этом проверяют нагрев подшипников, корпуса двигателя, наличие вибрации, характер шума подшипников.

При ненормальном шуме подшипников и их перегреве двигатель приходится разбирать и устранять причину. При невозможности устранить причину ненормальной работы подшипника он заменяется.

При повышенном нагреве корпуса двигателя (большем, чем у других нормально работающих двигателей) он останавливается и производится проверка прилегания контактов в аппаратах, через которые подводится напряжение к двигателю, проверка плотности затягивания зажимов проводов, начиная от выводных концов в коробке двигателя, измерение величины напряжения между фазами.

При нормальном напряжении, при исправности цепи, подводящей напряжение к двигателю, и его повышенном нагреве на холостом ходу он должен отправляться в капитальный ремонт. Перед этим у него должно быть проверено соответствие обозначений выводных концов фазных обмоток, измерено сопротивление обмоток постоянному току, что делается при наладке опытными специалистами.

О других неисправностях и их устранении можно узнать ниже по табл. 2.137, далее рассказано об устранении вибраций.

I После проверки двигателя на холостом ходу начинается его проверка под нагрузкой. При нормальной работе двигателя в течение 20…30 мин с механизмом далее продолжается его обкатка вместе с механизмом не менее 8 ч.

При этом прирабатываются подвижные детали механизмов, проверяется на нагрев электрооборудование, выявляются его слабые места. Режим обкатки определяется механиками, производившими монтаж технологического оборудования.

Способы пуска в ход асинхронных двигателей

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

  • На практике применяются следующие способы пуска: непосредственное присоединение к сети — прямой пуск; понижение напряжения при пуске;
  • включение сопротивления в цепь ротора в двигателях с фазовым ротором.
  • Акт технологического присоединения.

25.09.2018

Ссылка на основную публикацию
Adblock
detector